Advertisement

Microwave-Assisted ZrO2 Nanoparticles and Its Photocatalytic and Antibacterial Studies

  • K. Karthik
  • M. Madhukara Naik
  • M. Shashank
  • M. Vinuth
  • V. Revathi
Original Paper
  • 45 Downloads

Abstract

ZrO2 nanoparticles were prepared by the microwave-assisted method. XRD, FTIR, FESEM with EDS, TEM, UV–Vis, and photoluminescence were used for the characterization of ZrO2 nanoparticles. XRD exhibits cubic structure with an average crystallite size of 12 nm. FESEM and TEM images confirm the nanoparticles with an average particle size of 35 nm. From FTIR results, the characteristic vibrational band (Zr–O) is observed at 735 cm−1. The optical bandgap of the microwave-assisted ZrO2 nanoparticles is found to be 4.42 eV. The photoluminescence spectrum of ZrO2 nanoparticles showed blue, green and orange emissions. The photocatalytic degradation study of ZrO2 nanoparticles was investigated against the Methylene Blue (MB) and Rose Bengal (RB) dyes under UV light irradiation. Microwave-assisted ZrO2 nanoparticles showed an excellent photocatalytic activity (MB and RB dye) monitored by using UV–Vis spectrophotometer. Antibacterial activity (disc diffusion method) of microwave-assisted ZrO2 nanoparticles was studied against foodborne pathogens. Furthermore, microwave-assisted ZrO2 nanoparticles will be applicable to wastewater remediation and pharmaceutical applications.

Keywords

Microwave-assisted method Photoluminescence Photocatalytic Antibacterial activities 

Notes

References

  1. 1.
    J. Singh, G. Kaur, and M. Rawat (2016). J. Bioelectron. Nanotechnol. 1, (1), 9–17.Google Scholar
  2. 2.
    D. Pisswan, T. Niidome, and M. B. Cortie (2011). J. Control Release 149, 65–71.CrossRefGoogle Scholar
  3. 3.
    L. Hu, Z. Chen, and Y. Xie (2016). J. Nat. Prod. 59, 1143–1145.CrossRefGoogle Scholar
  4. 4.
    G. Wang, F. Meng, C. Ding, P. K. Chu, and X. Liu (2010). Acta Biomaterialia 6, 990–1000.CrossRefGoogle Scholar
  5. 5.
    D. He, Y. Ding, H. Luo, and C. Li (2004). J. Mol. Catal. A Chem. 208, 267–271.CrossRefGoogle Scholar
  6. 6.
    N. L. Gavade, A. N. Kadam, Y. B. Gaikwad, M. J. Dhanavade, and K. M. Garadkar (2016). J. Mater. Sci. Mater. Electron. 27, 11080.CrossRefGoogle Scholar
  7. 7.
    A. Majedi, A. Abbasi, F. Davar, and J. Sol-Gel (2016). Sci. Technol. 77, 542.Google Scholar
  8. 8.
    Ch Venkata Reddy, B. Babu, I. Neelakanta Reddy, and J. Kim (2018). Ceram. Int. 44, 6940–6948.CrossRefGoogle Scholar
  9. 9.
    A. Fakhri, S. Behrouz, I. Tyagi, S. Agarwal, and V. K. Gupta (2016). J. Mol. Liq. 216, 342–346.CrossRefGoogle Scholar
  10. 10.
    H. Zheng, K. Liu, H. Cao, and X. Zhang (2009). J. Phys. Chem. C 113, 18259–18263.CrossRefGoogle Scholar
  11. 11.
    M. Kumaresan, K. Vijai Anand, K. Govindaraju, S. Tamilselvan, and V. Ganesh Kumar (2018). Microb. Pathog. 124, 311–315.CrossRefGoogle Scholar
  12. 12.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan (2017). J. Mater. Sci. Mater. Electron. 28, 11420–11429.CrossRefGoogle Scholar
  13. 13.
    K. Gopinath, N. Parimala Devi, M. Govindarajan, K. Bhakyaraj, S. Kumaraguru, A. Arumugam, N. S. Alharbi, S. Kadaikunnan, and G. Benelli (2017). J. Clust. Sci. 28, 1541–1550.CrossRefGoogle Scholar
  14. 14.
    J. A. Badenes, J. B. Vicent, M. A. Tena, and G. Monros (2002). J. Mater. Sci. 37, 1413–1420.CrossRefGoogle Scholar
  15. 15.
    Z. W. Quan, L. S. Wang, and J. Lin (2005). Mater. Res. Bull. 40, 810–820.CrossRefGoogle Scholar
  16. 16.
    S. Sapra, S. Mayilo, T. A. Klar, A. L. Rogach, and J. Feldmann (2007). Adv. Mater. 19, 569–572.CrossRefGoogle Scholar
  17. 17.
    H. Hayashi, A. Ueda, A. Suino, K. Hiro, and Y. Hakuta (2009). J. Solid State Chem. 182, 2985–2990.CrossRefGoogle Scholar
  18. 18.
    N. Zhao, D. Pan, W. Nie, and X. Ji (2006). J. Am. Chem. Soc. 128, 10118–10124.CrossRefGoogle Scholar
  19. 19.
    S. F. Wang, F. Gu, M. K. Lü, Z. S. Yang, G. J. Zhou, H. P. Zhang, Y. Y. Zhou, and S. M. Wang (2006). Opt. Mater. 28, 1222–1226.CrossRefGoogle Scholar
  20. 20.
    C. Han, M.-Q. Yang, B. Weng, and X. Yi-Jun (2014). Phys. Chem. Chem. Phys. 16, 1689.CrossRefGoogle Scholar
  21. 21.
    T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov, and T. Yao (2002). Appl. Phys. Lett. 81, 1231–1235.CrossRefGoogle Scholar
  22. 22.
    J. Isasi-Marín, M. Pérez-Estébanez, C. Díaz-Guerra, J. F. Castillo, V. Correcher, and M. R. Cuervo-Rodríguez (2009). J. Phys. D 42, 075418.CrossRefGoogle Scholar
  23. 23.
    M. Umadevi and A. Jegatha Christy (2013). Spectrochimic. Acta Part A Mol. Biomol. Spectrosc. 109, 133.CrossRefGoogle Scholar
  24. 24.
    R. Katwal, H. Kaur, G. Sharma, M. Naushad, and D. Pathania (2015). J. Ind. Eng. Chem. 31, 173.CrossRefGoogle Scholar
  25. 25.
    H. Sudrajat, S. Babel, H. Sakai, and S. Takizawa (2016). J. Environ. Manag. 165, 224.CrossRefGoogle Scholar
  26. 26.
    C. Dhandapani, R. Narayanasamy, S. N. Karthick, K. V. Hemalatha, S. Selvam, P. Hemalatha, M. S. Kumar, S. D. Kirupha, and H. M. Kim (2016). Optik 127, 10288.CrossRefGoogle Scholar
  27. 27.
    H. M. Shinde, T. T. Bhosale, N. L. Gavade, S. B. Babar, R. J. Kamble, B. S. Shirke, and K. M. Garadkar (2018). J. Mater. Sci. Mater. Electron. 29, 14055.CrossRefGoogle Scholar
  28. 28.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan (2018). Mater. Res. Innov..  https://doi.org/10.1080/14328917.2018.1475443.CrossRefGoogle Scholar
  29. 29.
    S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary, and K. Srinivasan (2011). Spectrochim. Acta Part A 79, 594.CrossRefGoogle Scholar
  30. 30.
    K. Mageshwari and R. Sathyamoorthy (2013). J. Mater. Sci. Technol. 29, (10), 909.CrossRefGoogle Scholar
  31. 31.
    K. Karthik, S. Dhanuskodi, C. Gopinath, and S. Sivaramakrishnan (2014). Int. J. Innov. Res. Sci. Eng. 558–561. http://ijirse.in/docs/ican14/ican105.pdf.
  32. 32.
    V. Revathi and K. Karthik (2018). J. Mater. Sci. Mater. Electron. 29, 18519–18530.CrossRefGoogle Scholar
  33. 33.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan (2018). J. Phys. Chem. Solids 112, 106–118.CrossRefGoogle Scholar
  34. 34.
    S. M. Mortazavi, M. Khatami, I. Sharifi, H. Heli, K. Kaykavousi, M. H. S. Poor, S. Kharazi, and M. A. L. Nobre (2017). J. Clust. Sci. 28, 2997–3007.CrossRefGoogle Scholar
  35. 35.
    M. Khatami, I. Sharifi, M. A. L. Nobre, N. Zafarnia, and M. R. Aflatoonian (2018). Green Chem. Lett. Rev. 11, (2), 125–134.CrossRefGoogle Scholar
  36. 36.
    M. Madhukara Naik, H. S. Bhojya Naik, G. Nagaraju, M. Vinuth, K. Vinu, and S. K. Rashmi (2018). J. Mater. Sci. Mater. Electron. 29, (23), 20395–20414.CrossRefGoogle Scholar
  37. 37.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan (2019). J. Photochem. Photobiol. B Biol. 190, 8–20.CrossRefGoogle Scholar
  38. 38.
    M. Khatami, H. Q. Alijani, H. Heli, and I. Sharifi (2018). Ceram. Int. 44, 15596–15602.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Energy Materials Research Laboratory, Department of ChemistrySiddaganga Institute of Technology (Affiliated to Visvesvaraya Technological University)TumkurIndia
  2. 2.School of PhysicsBharathidasan UniversityTiruchirappalliIndia
  3. 3.Department of Studies and Research in Industrial Chemistry, School of Chemical SciencesKuvempu UniversityShankaraghattaIndia
  4. 4.Department of ChemistryNIE Institute of TechnologyMysoreIndia
  5. 5.Department of PhysicsJaya College of Arts and ScienceChennaiIndia

Personalised recommendations