Advertisement

A Comparative Computational Investigation of Phosgene Adsorption on (XY)12 (X = Al, B and Y = N, P) Nanoclusters: DFT Investigations

  • Rahman Padash
  • Mehdi Rahimi-Nasrabadi
  • Ali Shokuhi Rad
  • A. Sobhani-Nasab
  • Teofil Jesionowski
  • Hermann Ehrlich
Original Paper
  • 25 Downloads

Abstract

In this work, the adsorption of phosgene (COCl2) gas on the outer surface of Al12N12, Al12P12, B12N12 and B12P12 pristine nanoclusters is studied with regard to different aspects, including energetic, geometric and electronic properties, using the M06-2X/B97D/B3LYP//6-311g(d,p) levels of theory. The adsorption energies of phosgene molecule on the exterior surface of pure Al12N12, Al12P12, B12N12 and B12P12 nanoclusters are − 0.816, − 0.272, − 0.272 and − 0.272 eV, with optimum distances of 2.01, 3.77, 2.52, and 3.42 Å, respectively. Our results show that these combinatorial nanoclusters are able to adsorb the phosgene molecule via exothermic processes. It is demonstrated that by increasing the quantity of phosgene gas, the adsorption energy becomes less negative (except in the case of Al12P12). The Al12N12 nanocluster is more sensitive to phosgene gas than the other nanoclusters.

Keywords

Adsorption Phosgene gas Electronic structure X12Y12 Nanocluster 

References

  1. 1.
    Q. M. Wang and R. Q. Huang (2000). J. Organomet. Chem. 604, 287.CrossRefGoogle Scholar
  2. 2.
    S. A. Cucinell and E. Arsenal (1974). Arch. Environ. Health 28, 272.CrossRefGoogle Scholar
  3. 3.
    M. T. Baei, A. Soltani, S. Hashemian, and H. Mohammadian (2014). Can. J. Chem. 92, 605.CrossRefGoogle Scholar
  4. 4.
    J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2012). Sens. Actuators B 171, 846.CrossRefGoogle Scholar
  5. 5.
    S.-K. Joung, T. Amemiya, M. Murabayashi, R. Cai, and K. Itoh (2005). Surf. Sci. 598, 174.CrossRefGoogle Scholar
  6. 6.
    S. Virji, R. Kojima, J. D. Fowler, J. G. Villanueva, R. B. Kaner, and B. H. Weiller (2010). Nano Res. 2, 135.CrossRefGoogle Scholar
  7. 7.
    E. Shakerzadeh, E. Khodayar, and S. Noorizadeh (2016). Comput. Mater. Sci. 118, 155.CrossRefGoogle Scholar
  8. 8.
    G. G. Esposito, D. Lillian, G. E. Podolak, and R. M. Tuggle (1977). Anal. Chem. 49, 1774.CrossRefGoogle Scholar
  9. 9.
    J. Amani, A. Khoshroo, and M. Rahimi-Nasrabadi (2018). Microchim. Acta. 185, 79.CrossRefGoogle Scholar
  10. 10.
    A. Khoshroo, L. Hosseinzadeh, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, and H. Ehrlich (2018). J. Electroanal. Chem. 823, 61.CrossRefGoogle Scholar
  11. 11.
    J. Beheshtian, M. Kamfiroozi, Z. Bagheri, and A. Ahmadi (2012). Chin. J. Chem. Phys. 25, 60.CrossRefGoogle Scholar
  12. 12.
    J. Amani, M. Maleki, A. Khoshroo, A. Sobhani-Nasab, and M. Rahimi-Nasrabadi (2018). Anal. Biochem. 548, 53.CrossRefGoogle Scholar
  13. 13.
    M. Aghazadeh, A. A. M. Barmi, and M. Hosseinifard (2012). Mater. Lett. 73, 28.CrossRefGoogle Scholar
  14. 14.
    J. Beheshtian, M. Kamfiroozi, Z. Bagheri, and A. Ahmadi (2011). Physica E 44, 546.CrossRefGoogle Scholar
  15. 15.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162.  https://doi.org/10.1038/318162a0.CrossRefGoogle Scholar
  16. 16.
    M. Rahimi-Nasrabadi, A. Khoshroo, and M. Mazloum-Ardakani (2017). Sens. Actuators B 240, 125.CrossRefGoogle Scholar
  17. 17.
    J. Beheshtian, M. Kamfiroozi, Z. Bagheri, and A. A. Peyghan (2012). Chin. J. Chem. Phys. 25, 60.  https://doi.org/10.1088/1674-0068/25/01/60-64.CrossRefGoogle Scholar
  18. 18.
    H. R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, and M. R. Ganjali (2017). Appl. Surf. Sci. 423, 1025.CrossRefGoogle Scholar
  19. 19.
    W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162.CrossRefGoogle Scholar
  20. 20.
    J. Beheshtian, Z. Bagheri, M. Kamfiroozi, and A. Ahmadi (2012). J. Mol. Model. 18, 2653.CrossRefGoogle Scholar
  21. 21.
    D. L. Strout (2000). J. Phys. Chem. A 104, 3364.CrossRefGoogle Scholar
  22. 22.
    R. Wang, D. Zhang, and C. Liu (2005). Chem. Phys. Lett. 411, 333.CrossRefGoogle Scholar
  23. 23.
    A. Shokuhi Rad and K. Ayub (2016). J. Alloys Compd. 672, 161.CrossRefGoogle Scholar
  24. 24.
    A. Shokuhi Rad and K. Ayub (2016). J. Alloys Compd. 678, 317.CrossRefGoogle Scholar
  25. 25.
    A. Shokuhi Rad and K. Ayub (2016). Thin Solid Films 612, 179.CrossRefGoogle Scholar
  26. 26.
    J. Beheshtian, Z. Bagheri, M. Kamfiroozi, and A. Ahmadi (2011). Microelectron. J. 42, 1400.CrossRefGoogle Scholar
  27. 27.
    A. Shokuhi Rad and K. Ayub (2016). Vacuum 131, 135.CrossRefGoogle Scholar
  28. 28.
    R. Padash, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, et al. (2018). Appl. Phys. A 124, 582.  https://doi.org/10.1007/s00339-018-1965-y.CrossRefGoogle Scholar
  29. 29.
    A. S. Rad and K. Ayub (2018). J. Mol. Liq. 255, 168.CrossRefGoogle Scholar
  30. 30.
    A. Shokuhi Rad (2016). Heteroat. Chem. 27, 316.CrossRefGoogle Scholar
  31. 31.
    A. S. Rad and K. Ayub (2017). Mater. Chem. Phys. 194, 337.CrossRefGoogle Scholar
  32. 32.
    A. S. Rad and K. Ayub (2017). J. Mol. Liq. 238, 303.CrossRefGoogle Scholar
  33. 33.
    A. S. Rad and K. Ayub (2017). Solid State Sci. 69, 22.CrossRefGoogle Scholar
  34. 34.
    A. S. Rad (2017). J. Nanostruct. Chem. 7, 207.CrossRefGoogle Scholar
  35. 35.
    A. S. Rad (2017). Can. J. Chem. 95, 845.CrossRefGoogle Scholar
  36. 36.
    A. Shokuhi Rad, S. Bagheri Novir, S. Mohseni, N. Ramezani Cherati, and A. Mirabi (2017). Heteroat. Chem. 28, 21396.CrossRefGoogle Scholar
  37. 37.
    A. S. Rad (2018). J. Theoret. Comput. Chem. 17, 1850013.CrossRefGoogle Scholar
  38. 38.
    Y. Zhao and D. Truhlar (2008). Theor. Chem. Acc. 120, 215.CrossRefGoogle Scholar
  39. 39.
    Y. Zhao and D. G. Truhlar (2008). Acc. Chem. Res. 41, 157.CrossRefGoogle Scholar
  40. 40.
    N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner (2008). J. Comput. Chem. 29, 839.CrossRefGoogle Scholar
  41. 41.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox Gaussian 09, in (Gaussian Inc, Wallingford, 2009).Google Scholar
  42. 42.
    J. Beheshtian, Z. Bagheri, M. Kamfiroozi, and A. Ahmadi (2012). J. Mol. Model. 18, 2653.CrossRefGoogle Scholar
  43. 43.
    E. Shakerzadeh, N. Barazesh, and S. Z. Talebi (2014). Superlattices Microstruct. 76, 264.CrossRefGoogle Scholar
  44. 44.
    J. Li, T. He, and G. Yang (2012). Nanoscale 4, 1665.CrossRefGoogle Scholar
  45. 45.
    J. Beheshtian, Z. Bagheri, M. Kamfiroozi, and A. Ahmadi (2011). Microelectron. J. 42, 1400.CrossRefGoogle Scholar
  46. 46.
    S. Yourdkhani, T. Korona, and N. L. Hadipour (2015). J. Phys. Chem. A 119, 6446.CrossRefGoogle Scholar
  47. 47.
    A. S. Rad, A. Mirabi, M. Peyravi, and M. Mirzaei (2017). Can. J. Phys. 95, 958.CrossRefGoogle Scholar
  48. 48.
    T. V. Regemorter, M. Guillaume, G. Sini, J. S. Sears, V. Geskin, J.-L. Bredas, D. Beljonne, and J. Cornil (2012). Theor. Chem. Acc. 131, 1.Google Scholar
  49. 49.
    L. Turi and J. J. Dannenberg (1993). J. Phys. Chem. 97, 2488.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
  2. 2.Faculty of PharmacyBaqiyatallah University of Medical SciencesTehranIran
  3. 3.Department of Chemical Engineering, Qaemshahr BranchIslamic Azad UniversityQaemshahrIran
  4. 4.Young Researchers and Elite Club, Arak BranchIslamic Azad UniversityArakIran
  5. 5.Institute of Chemical Technology and Engineering, Faculty of Chemical TechnologyPoznan University of TechnologyPoznanPoland
  6. 6.IESEM, TU BergakademieFreibergGermany

Personalised recommendations