Advertisement

A [Cu3] Cluster-Based Chain Featuring Linkages of Acylhydrazone N–N Single Bonds and Cl Ions: Synthesis, Structure and Magnetic Properties

  • Ke-Ke Guo
  • Sen-Da Su
  • Yan-Ling Shen
  • Kai WangEmail author
  • Yan Li
  • Xiu-Qing Zhang
  • Bo LiEmail author
  • Hua-Hong Zou
  • Fu-Pei LiangEmail author
Original Paper
  • 34 Downloads

Abstract

A Cu coordiantion polymer, namely, [Cu3(ovph)(Py)2Cl2] (1) [H4ovph = N,N′-bis(o-vanillidene)pyridine-2,6-dicarbohydrazide]; Py = Pyridine], was synthesized by solvothermal reaction of copper acetate and diacylhydrazone ligand H4ovhp. It was characterized by element analysis, FT-IR, thermogravimetric analysis, PXRD and single crystal X-ray diffraction. Structural analysis indicated that the N–N bonds of its ovph4− ligands bridge the Cu2+ ions to form quasi-linear [Cu3] cluster-based units, which were further linked together by in situ generated µ-Cl, giving rise to a rare Cu chain structure containing two kinds of magnetic exchange pathways. Variable temperature magnetic measurements revealed that both N–N and Cl bridges convey antiferromagnetic couplings, with the best fitting JN–N = − 99.95 cm−1, JCl = − 5.70 cm−1, zj = − 1.17 cm−1 and g = 2.00.

Keywords

Cu coordination polymer Diacylhydrazone Cl bridges Magnetic interactions 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51572050 and 21771043) and the Guangxi Natural Science Foundation (Nos. 2018GXNSFAA138123 and 2015GXNSFDA139007).

References

  1. 1.
    G. M. Espallargas and E. Coronado (2018). Chem. Soc. Rev. 47, 533.CrossRefGoogle Scholar
  2. 2.
    W. X. Zhang, R. Ishikawa, B. Breedlove, and M. Yamashita (2013). RSC Adv. 3, 3772.CrossRefGoogle Scholar
  3. 3.
    X. Y. Liu, P. P. Cen, H. Li, H. S. Ke, S. Zhang, Q. Wei, G. Xie, S. P. Chen, and S. L. Gao (2014). Inorg. Chem. 53, 8088.CrossRefGoogle Scholar
  4. 4.
    J. Liu, Y. L. Qin, M. Qu, R. Clérac, and X. M. Zhang (2013). Dalton Trans. 42, 11571.CrossRefGoogle Scholar
  5. 5.
    M. V. Fedin, S. L. Veber, K. Y. Maryunina, G. V. Romanenko, E. A. Suturina, N. P. Gritsan, R. Z. Sagdeev, V. I. Ovcharenko, and E. G. Bagryanskaya (2010). J. Am. Chem. Soc. 132, 13886.CrossRefGoogle Scholar
  6. 6.
    C. K. Terajima, M. Ishii, T. Saito, C. Kanadani, T. Harada, and R. Kuroda (2012). Inorg. Chem. 51, 7502.CrossRefGoogle Scholar
  7. 7.
    R. T. Butcher, J. J. Novoa, J. R. Arin, A. W. Sandvik, M. M. Turnbull, C. P. Landee, B. M. Wells, and F. F. Awwadi (2009). Chem. Commun. 1359.Google Scholar
  8. 8.
    S. H. Lapidus, J. L. Manson, J. J. Liu, M. J. Smith, P. Goddard, J. Bendix, C. V. Topping, J. Singleton, C. Dunmars, J. F. Mitchella, and J. A. Schlueter (2013). Chem. Commun. 49, 3558.CrossRefGoogle Scholar
  9. 9.
    X. Y. Zhang, B. Li, and J. P. Zhang (2016). Inorg. Chem. 55, 3378.CrossRefGoogle Scholar
  10. 10.
    H. S. Scott, A. Nafady, J. D. Cashion, A. M. Bond, B. Moubaraki, K. S. Murray, and S. M. Neville (2013). Dalton Trans. 42, 10326.CrossRefGoogle Scholar
  11. 11.
    T. Hamaguchi, T. Nagata, S. Hayami, S. Kawata, and I. Andoa (2017). Dalton Trans. 46, 6196.CrossRefGoogle Scholar
  12. 12.
    A. Lanza, C. Fiolka, M. Fisch, N. Casati, M. Skoulatos, C. Rüegg, K. W. Krämer, and P. Macchi (2014). Chem. Commun. 50, 14504.CrossRefGoogle Scholar
  13. 13.
    K. Wang, Z. L. Chen, H. H. Zou, S. H. Zhang, Y. Li, X. Q. Zhang, W. Y. Sun, and F. P. Liang (2018). Dalton Trans. 47, 2337.CrossRefGoogle Scholar
  14. 14.
    K. Wang, Z. L. Chen, H. H. Zou, K. Hu, H. Y. Li, Z. Zhang, W. Y. Sun, and F. P. Liang (2016). Chem. Commun. 52, 8297.CrossRefGoogle Scholar
  15. 15.
    Z. L. Chen, Y. L. Shen, L. L. Li, H. H. Zou, X. X. Fu, Z. Y. Liu, K. Wang, and F. P. Liang (2017). Dalton Trans. 46, 15032.CrossRefGoogle Scholar
  16. 16.
    D. Q. Wu, D. Shao, X. Q. Wei, F. X. Shen, L. Shi, Y. Q. Zhang, and X. Y. Wang (2017). Dalton Trans. 46, 12884.CrossRefGoogle Scholar
  17. 17.
    G. M. Sheldrick SHELX-2014: Programs for Crystal Structure Analysis (University of Göttingen, Göttingen, 2014).Google Scholar
  18. 18.
    G. M. Sheldrick (2015). Acta Crystallogr. C 71, 3.CrossRefGoogle Scholar
  19. 19.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339.CrossRefGoogle Scholar
  20. 20.
    L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2015). Acta Crystallogr. A 71, 59.CrossRefGoogle Scholar
  21. 21.
    L. Lemus, G. Ferraudi, and A. G. Lappin (2013). Dalton Trans. 42, 8637.CrossRefGoogle Scholar
  22. 22.
    N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini, and K. S. Murray (2013). J. Comput. Chem. 34, 1164.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and BioengineeringGuilin University of TechnologyGuilinChina
  2. 2.College of Chemistry and Pharmaceutical EngineeringNanyang Normal UniversityNanyangChina
  3. 3.State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and PharmacyGuangxi Normal UniversityGuilinChina

Personalised recommendations