pH-Dependent Assembly of Three POM-Based Host–Guest Compounds Constituted by Keggin Polyoxoanions and 4,4′-Bipyridines

  • Shu Y. Shi
  • Ling Y. Chen
  • Xun B. Zhao
  • Ying Li
  • Jun Zhang
  • Bai X. Ren
  • Xiao B. Cui
Original Paper


Three POM-based host–guest compounds constituted by Keggin-type polyoxometalates (POMs): (4,4′-Hbpy)3 [PMo12O40]·2H2O (1); (4,4′-H2bpy)3[PMo12O40]2·3H2O (2) and (4,4′-H2bpy) (4,4′-Hbpy)·[PW12O40]·4H2O (3) (bpy = 4,4′-bpyridine) have been synthesized hydrothermally and characterized by elemental analyses, IR, XPS spectra, powder XRD analyses, cyclic voltammetric measurements and single-crystal X-ray diffraction analyses. The three compounds all consist of Keggin-type POMs and 4,4′-bpy ligand, which are [PMo12O40]3− for 12 and [PW12O40]3− for 3. Through O···O interactions, Keggin POMs each other give rise to three different 3-D Supermolecular host structures, 4,4′-bpy and water molecules as guests accommodate different channels with H-bonding interactions. Discuss the pH role for the build POM based-hybrids contained 4,4′-bpy ligand. The photocatalytic properties of 13 have been investigated in the solid state.


Hydrothermal synthesis POM-based host–guest compounds pH value role Hydrogen bonds Photocatalytic property 



This work was supported by National Natural Science Foundation of China under Grant No. 21671003. In addition, anonymous reviewer provided helpful comments on the manuscript, which are greatly appreciated.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10876_2018_1475_MOESM1_ESM.docx (94 kb)
Supplementary material 1 (DOCX 93 kb)
10876_2018_1475_MOESM2_ESM.docx (56 kb)
Supplementary material 2 (DOCX 55 kb)
10876_2018_1475_MOESM3_ESM.docx (166 kb)
Supplementary material 3 (DOCX 165 kb)
10876_2018_1475_MOESM4_ESM.docx (71 kb)
Supplementary material 4 (DOCX 71 kb)
10876_2018_1475_MOESM5_ESM.docx (252 kb)
Supplementary material 5 (DOCX 251 kb)
10876_2018_1475_MOESM6_ESM.docx (200 kb)
Supplementary material 6 (DOCX 200 kb)
10876_2018_1475_MOESM7_ESM.docx (22 kb)
Supplementary material 7 (DOCX 22 kb)


  1. 1.
    J. M. Lehn Supramolecular Chemistry (VCH, New York, NY, 1995).CrossRefGoogle Scholar
  2. 2.
    F. Vögtle Supramolecular Chemistry (Wiley, Chicester, 1991).Google Scholar
  3. 3.
    M. Lehn Comprehensive Supramolecular Chemistry (Pergamum, New York, NY, 1996).Google Scholar
  4. 4.
    J. M. Lehn (1990). Angew. Chem. Int. Ed. 29, 1304.CrossRefGoogle Scholar
  5. 5.
    C. N. R. Rao, S. Natarajan, and R. Vaidhyanathan (2004). Angew. Chem. Int. Ed. 43, 1466.CrossRefGoogle Scholar
  6. 6.
    O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim. (2003). Nature. 423, 705.Google Scholar
  7. 7.
    J. L. C. Rowsell and O. M. Yaghi (2004). Microporous Mesoporous Mater. 73, 3.CrossRefGoogle Scholar
  8. 8.
    T. Kresge, M. E. Leonowiez, W. J. Roth, J. C. Vartuli, and J. S. Beck (1992). Nature. 359, 710.CrossRefGoogle Scholar
  9. 9.
    M. T. Pope Comprehensive Coordination Chemistry II, vol. 4 (Elsevier Ltd, Oxford, UK, 2004), p. 635.Google Scholar
  10. 10.
    A. Flütsch, T. Schroeder, M. G. Grütter, and G. R. Patzke (2011). Bioorg. Med. Chem. Lett. 21, 1162.CrossRefGoogle Scholar
  11. 11.
    M. Bonchio, M. Carraro, G. Scorrano, and A. Bagno (2004). Adv. Synth. Catal. 346, 648.CrossRefGoogle Scholar
  12. 12.
    Y. Feng, Z. Han, J. Peng, J. Lu, B. Xue, L. Li, H. Ma, and E. Wang (2006). Mat. Lett. 60, 1588.CrossRefGoogle Scholar
  13. 13.
    E. Coronado and C. J. Gómez-García (1998). Chem. Rev. 98, 273.CrossRefGoogle Scholar
  14. 14.
    C. L. Hill (1998). Chem. Rev. 98, 1.CrossRefGoogle Scholar
  15. 15.
    A. Parrot, A. Bernard, A. Jacquart, S. A. Serapian, C. Bo, E. Derat, O. Oms, A. Dolbecq, A. Proust, R. Métivier, P. Mialane, and G. Izzet (2017). Angew. Chem. 129, 4950.CrossRefGoogle Scholar
  16. 16.
    E. Coronado, C. Giménez-Saiz, and C. J. Gómez-García (2005). Coord. Chem. Rev. 249, 1776.CrossRefGoogle Scholar
  17. 17.
    J. Clemente-Juan, M. Clemente-León, E. Coronado, J. Galán-Mascarós, C. Giménez-Saiz, and C. J. Gómez- García (1998). C.R. Acad. Sci. Paris série IIc, 305.Google Scholar
  18. 18.
    M. Lisa-Cantù, P. Gómez-Romero, P. Gómez-Romero, and C. Sanchez (2004). (Eds) Functional Hybrid Materials, Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, 210.Google Scholar
  19. 19.
    M. Clemente-León, E. Coronado, P. Delhaes, C. J. Gómez-García, and C. Mingotaud (2001). Adv. Mater. 13, 574.CrossRefGoogle Scholar
  20. 20.
    D. F. Sun, R. Cao, Y. Q. Sun, W. H. Bi, X. J. Li, Y. Q. Wang, Q. Shi, and X. Li (2003). Inorg. Chem. 42, 7512.CrossRefGoogle Scholar
  21. 21.
    H. Kumagai, M. Arishima, S. Kitagawa, K. Ymada, S. Kawata, and S. Kaizaki (2002). Inorg. Chem. 41, 1989.CrossRefGoogle Scholar
  22. 22.
    J. Miao, Y. W. Liu, Q. Tang, D. F. He, G. C. Yang, Z. Shi, S. X. Liu, and Q. Y. Wu (2014). Dalton Trans. 39, 14749.CrossRefGoogle Scholar
  23. 23.
    J. Q. Sha, J. Peng, Y. Zhang, H. J. Pang, A. X. Tian, and P. P. Zhang (2009). Cryst. Growth Des. 9, 1708.CrossRefGoogle Scholar
  24. 24.
    S. Y. Shi, Y. H. Sun, Y. Chen, J. N. Xu, X. B. Cui, Y. Wang, G. W. Wang, G. D. Yang, and J. Q. Xu (2010). Dalton Trans. 39, 1389.CrossRefGoogle Scholar
  25. 25.
    S. Noro, S. Kitagawa, M. Kondo, and K. Seki (2000). Angew. Chem. Int. Ed. 39, 2082.CrossRefGoogle Scholar
  26. 26.
    H. J. Chen, L. Z. Zhang, Z. G. Cai, G. Yang, and X. M. Chen (2000). J. Chem. Soc. Dalton Trans. 14, 2463.CrossRefGoogle Scholar
  27. 27.
    H. X. Yang, X. Lin, B. Xu, M. N. Cao, S. Y. Cao, and R. Cao (2010). J. Mol. Struct. 966, 33.CrossRefGoogle Scholar
  28. 28.
    J. Q. Sha, J. Peng, H. J. Pang, A. X. Tian, J. Chen, P. P. Zhang, and M. Zhu (2008). Solid State Sci. 10, 1491.CrossRefGoogle Scholar
  29. 29.
    S. Y. Shi, Y. C. Zou, X. B. Cui, J. N. Xu, Y. Wang, G. W. Wang, G. D. Yang, J. Q. Xu, T. G. Wang, and Z. M. Gao (2010). CrystEngComm. 12, 2122.CrossRefGoogle Scholar
  30. 30.
    S. Upreti and A. Ramanan (2006). Crystal Growth & Design. 6, 2067.CrossRefGoogle Scholar
  31. 31.
    Y. L. Wu, R. F. Shi, Y. L. Wu, J. M. Holcroft, Z. C. Liu, M. Frasconi, M. R. Wasielewski, H. Li, and J. F. Stoddart (2015). J. Am. Chem. Soc. 137, (12), 4111.CrossRefGoogle Scholar
  32. 32.
    S. Menuel, N. Azaroual, D. L. Natacha Six, F. Hapiot, and E. Monflier (2011). Chem. Eur. J. 17, (14), 3949.CrossRefGoogle Scholar
  33. 33.
    C. Falaise, M. A. Moussawi, S. Floquet, P. A. Abramov, M. N. Sokolov, M. Haouas, and E. Cadot (2018). J. Am. Chem. Soc. 140, 11198.CrossRefGoogle Scholar
  34. 34.
    Y. N. Chi, F. Y. Cui, and A. R. Jia (2012). CrystEngComm. 14, 3183.CrossRefGoogle Scholar
  35. 35.
    S. B. Li, H. Y. Ma, H. J. Pang, and L. Zhang (2014). Cryst. Growth Des. 14, 4450.CrossRefGoogle Scholar
  36. 36.
    H. Y. Liu, J. Yang, Y. Y. Liu, and J. F. Ma (2012). Dalton Trans. 41, 9922.CrossRefGoogle Scholar
  37. 37.
    L. S. Long (2010). CrystEngComm. 12, 1354.CrossRefGoogle Scholar
  38. 38.
    S. Reinoso, S. B. Bassil, M. Barsukova, and U. Kortz (2010). Eur. J. Inorg. Chem. 253.Google Scholar
  39. 39.
    Y. Y. Yang, L. Xu, F. Y. Li, and X. S. Qu (2013). Inor. Chem. Comm. 33, 142.CrossRefGoogle Scholar
  40. 40.
    F. Yu, X. J. Kong, and Y. Y. Zheng (2009). Dalton Trans. 9503.Google Scholar
  41. 41.
    X. Zhang, Z. H. Yi, L. Y. Zhao, Q. Chen, and X. L. Wang (2010). CrystEngComm. 12, 595.CrossRefGoogle Scholar
  42. 42.
    L. Zhang, W. B. Yang, X. F. Kuang, X. Y. Wu, and C. Z. Lu (2014). Dalton Trans. 43, 16328.CrossRefGoogle Scholar
  43. 43.
    L. M. Wang, H. Y. Guo, S. Li, Y. Y. Hu, Y. Wang, L. N. Xiao, D. C. Zhao, Z. M. Gao, D. F. Zheng, X. B. Cui, Y. Fan, and J. Q. Xu (2014). J. Coor. Chem. 67, 728.CrossRefGoogle Scholar
  44. 44.
    Y. B. Liu, Y. Wang, L. N. Xiao, Y. Y. Hu, L. M. Wang, X. B. Cui, and J. Q. Xu (2012). J. Coor. Chem. 65, 4342.CrossRefGoogle Scholar
  45. 45.
    Y. B. Liu, L. M. Wang, L. N. Xiao, Y. Y. Hu, D. C. Zhao, H. Y. Guo, Y. Peng, L. W. Fu, X. B. Cui, and J. Q. Xu (2015). J. Coord. Chem. 68, 398.CrossRefGoogle Scholar
  46. 46.
    F. X. Ma and Q. Zhao (2008). Acta Cryst. 64, 1224.Google Scholar
  47. 47.
    L. N. Xiao, L. M. Wang, X. N. Shan, H. Y. Guo, L. W. Fu, Y. Y. Hu, X. B. Cui, K. C. Li, and J. Q. Xu (2015). CrystEngComm. 17, 1336.CrossRefGoogle Scholar
  48. 48.
    S. Y. Shi, Z. L. Xu, H. H. Teng, L. Z. Zhao, X. B. Cui, and J. Q. Xu (2013). Inorg. Chim. Acta. 402, 123.CrossRefGoogle Scholar
  49. 49.
    L. M. Wang, Y. Wang, Y. Fan, L. N. Xiao, Y. Y. Hu, Z. M. Gao, D. F. Zheng, X. B. Cui, and J. Q. Xu (2014). CrystEngComm. 16, 430.CrossRefGoogle Scholar
  50. 50.
    J. Q. Sha, J. Peng, H. S. Liu, J. Chen, A. X. Tian, and P. P. Zhang (2007). Inorg. Chem. 46, 11183.CrossRefGoogle Scholar
  51. 51.
    J. Q. Sha, J. Peng, A. X. Tian, H. S. Liu, J. Chen, P. P. Zhang, and Z. M. Su (2007). Cryst. Growth Des. 7, 2535.CrossRefGoogle Scholar
  52. 52.
    S. X. Liu, L. H. Xie, B. Gao, C. D. Zhang, C. Y. Sun, D. H. Li, and Z. M. Su (2005). Chem. Commun. 5023.Google Scholar
  53. 53.
    Y. Wang, F. Q. Wu, L. Ye, T. G. Wang, G. W. Wang, S. Y. Shi, L. N. Xiao, X. B. Cui, and J. Q. Xu (2010). Inorg. Chem. Comm. 13, 703.CrossRefGoogle Scholar
  54. 54.
    M. X. Li, J. Du, J. P. Wang, and J. Y. Niu (2007). Inorg. Chem. Commun. 10, 1391.CrossRefGoogle Scholar
  55. 55.
    Bruker. SADABS v2008/1, Bruker AXS Inc., Madison, Wisconsin, USA (2008).Google Scholar
  56. 56.
    Bruker. APEX3 v2014. 3 - 0. Bruker AXS Inc., Madison, Wisconsin, USA (2014).Google Scholar
  57. 57.
    G. M. Sheldrick SHELXL-2014/7 (University of GÖttingen, Germany, 2014).Google Scholar
  58. 58.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Cryst. 42, 339.CrossRefGoogle Scholar
  59. 59.
    I. D. Brown (1981). in Structure and Bonding in Crystals, ed. M. O`Keefe, A. Navrotsky, Academic Press, New York.Google Scholar
  60. 60.
    A. X. Tian, J. Ying, J. Peng, J. Q. Sha, Z. M. Su, H. J. Pang, P. P. Zhang, Y. Chen, M. Zhu, and Y. Shen (2010). Cryst. Growth Des. 10, 1104.CrossRefGoogle Scholar
  61. 61.
    M. G. Liu, P. P. Zhang, J. Peng, H. X. Meng, X. Wang, M. Zhu, D. D. Wang, C. L. Meng, and K. Alimaje (2012). Cryst. Growth Des. 12, 1273.CrossRefGoogle Scholar
  62. 62.
    J. W. Sun, H. Y. Zhang, H. J. Wang, S. Chen, J. H. Wang, and L. Liu (2018). Inorg. Chem. Commun. 93, 153.CrossRefGoogle Scholar
  63. 63.
    X. L. Wang, N. Li, A. X. Tian, J. Ying, T. J. Li, X. L. Lin, J. Luan, and Y. Yang (2014). Inorg. Chem. 53, 7118.CrossRefGoogle Scholar
  64. 64.
    X. L. Wang, N. Xu, X. Z. Zhao, J. W. Zhang, C. H. Gong, and T. J. Li (2015). CrystEngComm. 17, 7038.CrossRefGoogle Scholar
  65. 65.
    A. Olgun, A. T. Çolak, I. H. Gübbük, O. Sahin, and E. Kanar (2017). J. Molec. Struc. 1134, 78.CrossRefGoogle Scholar
  66. 66.
    Y. Y. Hu, X. Zhang, D. C. Zhao, H. Y. Guo, L. W. Fu, L. L. Guo, X. B. Cui, Q. S. Huo, and J. Q. Xu (2015). Dalton Trans. 44, 14830.CrossRefGoogle Scholar
  67. 67.
    Q. Lan, J. Zhang, Z. M. Zhang, Y. Lu, and E. B. Wang (2013). Dalton Trans. 42, 1660.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shu Y. Shi
    • 1
  • Ling Y. Chen
    • 1
  • Xun B. Zhao
    • 1
  • Ying Li
    • 1
  • Jun Zhang
    • 2
  • Bai X. Ren
    • 1
  • Xiao B. Cui
    • 3
  1. 1.Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, College of Environmental EngineeringJilin Normal UniversitySipingChina
  2. 2.School of Materials and Chemical EngineeringAnhui Jianzhu UniversityHefeiChina
  3. 3.Department of Chemistry, College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchunChina

Personalised recommendations