Advertisement

Facile Synthesis and Characterization of CdSe/ZnSe Core/Shell and ZnxCd1−xSe Alloy Quantum Dots via Non-organometallic Route

  • Oluwatobi Samuel Oluwafemi
  • Vuyelwa Ncapayi
  • Sundararajan Parani
  • Ncediwe Tsolekile
Original Paper
  • 3 Downloads

Abstract

Hexadecylamine (HDA) capped CdSe/ZnSe core/shell and ZnxCd1−xSe alloy quantum dots (QDs) have been synthesized successfully via a non-organometallic, hot injection method. The optical, structural and morphological properties of the as-synthesized QDs were determined by using, UV–visible (UV–Vis) and photoluminescence spectroscopy, X-ray diffraction and transmission electron microscopy (TEM). The effect of reaction time and temperature on the core/shell and alloy formation were investigated in detail. The addition of ZnSe precursor to the pre-synthesized HDA capped CdSe QDs at 230 °C produced core/shell CdSe/ZnSe QDs whereas at 250 °C an alloy QDs were obtained initially which later transformed to core/shell structure with time. On the other hand, the immediate addition of ZnSe precursor to the hot CdSe-precursor solution in HDA at 230 °C resulted in HDA capped ZnxCd1−xSe alloy QDs. The optical and structural characterisation shows that the as-synthesised core–shell and alloy QDs are of high quality. This method is simple, and fast for the preparation of core/shell and alloy binary QDs and will encourage their synthesis for various industrial applications.

Keywords

Quantum dots CdSe Core/shell Alloy 

Notes

Acknowledgements

This work was supported by the National, Research Foundation (NRF), South Africa, University of Johannesburg, South Africa, Faculty of Science Research Committee, and University research Committee, South Africa for financial support.

References

  1. 1.
    Y. Pu, F. Cai, D. Wang, J. X. Wang, and J. F. Chen (2018). Ind. Eng. Chem. Res. 57, 1790.CrossRefGoogle Scholar
  2. 2.
    A. T. Nguyen, W.-H. Lin, Y.-H. Lu, Y.-D. Chiou, and Y.-J. Hsu (2014). Appl. Catal. A 476, 140.CrossRefGoogle Scholar
  3. 3.
    C. T. Matea, T. Mocan, F. Tabaran, T. Pop, O. Mosteanu, C. Puia, C. Iancu, and L. Mocan (2017). Int. J. Nanomed. 12, 5421.CrossRefGoogle Scholar
  4. 4.
    N. Tsolekile, S. Parani, M. C. Matoetoe, S. P. Songca, and O. S. Oluwafemi (2017). Nano-Struct. Nano-Objects 12, 46.CrossRefGoogle Scholar
  5. 5.
    K. Kaviyarasu, A. Ayeshamariam, E. Manikandan, J. Kennedy, R. Ladchumananandasivam, U. U. Gomes, M. Jayachandran, and M. Maaza (2016). Mater. Sci. Eng. B 210, 1.CrossRefGoogle Scholar
  6. 6.
    U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann (2008). Nat. Methods 5, 763.CrossRefGoogle Scholar
  7. 7.
    C.-C. Chen, Y.-J. Hsu, Y.-F. Lin, and S.-Y. Lu (2008). J. Phys. Chem. C 112, 17964.CrossRefGoogle Scholar
  8. 8.
    C. Murray, D. J. Norris, and M. G. Bawendi (1993). J. Am. Chem. Soc. 115, 8706.CrossRefGoogle Scholar
  9. 9.
    M. J. Almendral-Parra, A. Alonso-Mateos, J. F. Boyero-Benito, S. Sánchez-Paradinas, and E. Rodríguez-Fernández (2014). J. Nanomater. 5.Google Scholar
  10. 10.
    V. Biju, T. Itoh, A. Anas, A. Sujith, and M. Ishikawa (2008). Anal. Bioanal. Chem. 391, 2469.CrossRefGoogle Scholar
  11. 11.
    Y.-F. Lin, Y.-J. Hsu, S.-Y. Lu, K.-T. Chen, and T.-Y. Tseng (2007). J. Phys. Chem. C 111, 13418.CrossRefGoogle Scholar
  12. 12.
    G. K. Grandhi and R. Viswanatha (2016). J. Phys. Chem. C 120, 19785.CrossRefGoogle Scholar
  13. 13.
    R. K. Ratnesh and M. S. Mehata (2015). AIP Adv. 5, 097114.CrossRefGoogle Scholar
  14. 14.
    O. S. Oluwafemi, N. Revaprasadu, and O. O. Adeyemi (2010). Mater. Lett. 64, 1513.CrossRefGoogle Scholar
  15. 15.
    O. S. Oluwafemi, V. Ncapayi, O. O. Adeyemi, and S. P. Songca (2014). Mater. Lett. 123, 165.CrossRefGoogle Scholar
  16. 16.
    O. S. Oluwafemi, V. Ncapayi, O. Olubomehin, O. A. Osibote, and S. P. Songca (2014). Mater. Sci. Semicond. Process. 27, 427.CrossRefGoogle Scholar
  17. 17.
    O. S. Oluwafemi, S. Mohan, O. Olubomehin, O. A. Osibote, and S. P. Songca (2016). J. Mater. Sci. Mater. Electron. 27, 3880.CrossRefGoogle Scholar
  18. 18.
    S. M. Farkhani and A. Valizadeh (2014). IET Nanobiotechnol. 8, 59.CrossRefGoogle Scholar
  19. 19.
    D. Vasudevan, R. R. Gaddam, A. Trinchi, and I. Cole (2015). J. Alloys Compd. 636, 395.CrossRefGoogle Scholar
  20. 20.
    A. Saha, K. V. Chellappan, K. S. Narayan, J. Ghatak, R. Datta, and R. Viswanatha (2013). J. Phys. Chem. Lett. 4, 3544.CrossRefGoogle Scholar
  21. 21.
    Y. Jang, A. Shapiro, M. Isarov, A. Rubin-Brusilovski, A. Safran, A. K. Budniak, F. Horani, J. Dehnel, A. Sashchiuk, and E. Lifshitz (2017). Chem. Commun. 53, 1002.CrossRefGoogle Scholar
  22. 22.
    P. Reiss, M. Protiere, and L. Li (2009). Small 5, 154.CrossRefGoogle Scholar
  23. 23.
    S. N. Sharma, H. Sharma, S. Singh, R. M. Mehra, G. Singh, and S. M. Shivaprasad (2010). Mater. Res. Innov. 14, 62.CrossRefGoogle Scholar
  24. 24.
    A. M. Kadim (2017). J. Metastab. Nanocryst. 29, 17.CrossRefGoogle Scholar
  25. 25.
    B. C. Fitzmorris, Y.-C. Pu, J. K. Cooper, Y.-F. Lin, Y.-J. Hsu, Y. Li, and J. Z. Zhang (2013). Appl. Mater. Interfaces 5, 2893.CrossRefGoogle Scholar
  26. 26.
    E. Groeneveld, L. Witteman, M. Lefferts, X. Ke, S. Bals, G. V. Tendeloo, and C. M. Donega (2013). ACS Nano 9, 7913.CrossRefGoogle Scholar
  27. 27.
    Y.-C. Pu and Y.-J. Hsu (2014). Nanoscale 6, 3881.CrossRefGoogle Scholar
  28. 28.
    S. Parani, K. Pandian, and O. S. Oluwafemi (2018). Int. J. Biol. Macromol. 107, 635.CrossRefGoogle Scholar
  29. 29.
    W. W. Yu, L. Qu, W. Guo, and X. Peng (2003). Chem. Mater. 15, 2854.CrossRefGoogle Scholar
  30. 30.
    N. Grumbach, R. K. Capek, E. Tilchin, A. Rubin-Brusilovski, J. Yang, Y. Ein-Eli, and E. Lifshitz (2015). J. Phys. Chem. C 119, 12749.CrossRefGoogle Scholar
  31. 31.
    S. J. Lim, A. Schleife, and A. M. Smith (2017). Nat. Commun. 8, 14849.CrossRefGoogle Scholar
  32. 32.
    H. Asano, K. Arai, M. Kita, and T. Omata (2017). Mater. Res. Express 4, 106501.CrossRefGoogle Scholar
  33. 33.
    J. Cho, Y. K. Jung, J. K. Lee, and H. S. Jung (2017). Langmuir 33, 3711.CrossRefGoogle Scholar
  34. 34.
    S. Parani, N. Tsolekile, K. Pandian, and O. S. Oluwafemi (2017). J. Mater. Sci. Mater. Electron. 28, 11151.CrossRefGoogle Scholar
  35. 35.
    S. Sadhu and A. Patra (2008). J. Chem. Sci. 120, 557.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Oluwatobi Samuel Oluwafemi
    • 1
    • 2
  • Vuyelwa Ncapayi
    • 1
    • 2
  • Sundararajan Parani
    • 1
    • 2
  • Ncediwe Tsolekile
    • 1
    • 2
  1. 1.Department of Applied ChemistryUniversity of JohannesburgDoornfontein, JohannesburgSouth Africa
  2. 2.Centre for Nanomaterials Science ResearchUniversity of JohannesburgDoornfontein, JohannesburgSouth Africa

Personalised recommendations