Journal of Cluster Science

, Volume 30, Issue 1, pp 141–149 | Cite as

Silver and Sodium Fluorescein Co-doped Phosphomolybdate Microspindle: Synthesis and Spectroscopic Properties

  • Ruru Meng
  • Xiaomei He
  • Jingjing Chen
  • Jing Yang
  • Guan WangEmail author
Original Paper


A novel phosphomolybdate material has been prepared using chemical precipitation method by means of doping silver ion and sodium fluorescein. This hybrid material exhibits extremely rare spindle morphology in polyoxometalate based materials. Control experiments are carried out to explore the impact factors of this peculiar shape in self-assembly process. Interestingly, the microspindle exhibits a dual-emission spectrum with the peaks centered at 467 and 512 nm, corresponding to the phosphomolybdate and sodium fluorescein related photoluminescence, respectively. Therefore, the successful preparations in this work not only enrich the structural diversity, but also provide us with an enlightening synthetic strategy for the functionalization of polyoxometalate based materials.


Polyoxometalate Microspindle Dual-emission Spectroscopic materials 



This work was supported by the NSFC-Henan Joint Fund of China (U1504201), the Basic and Frontier Technology Research Plan of Henan Province (152300410192), 2017 Henan Postdoctoral Science Foundation. The authors gratefully acknowledge Qiangsheng Wang for the ESI–MS characterization and Chaofeng He from shiyanjia lab for the test of XPS, TEM and TG–DTA tests (

Supplementary material

10876_2018_1470_MOESM1_ESM.docx (163 kb)
Supplementary material 1 (DOCX 163 kb)


  1. 1.
    T. Yamase (1998). Chem. Rev. 98, 307–325.CrossRefPubMedGoogle Scholar
  2. 2.
    D. L. Long, E. Burkholder, and L. Cronin (2007). Chem. Soc. Rev. 36, 105–121.CrossRefPubMedGoogle Scholar
  3. 3.
    H. N. Miras, J. Yan, D. L. Long, and L. Cronin (2012). Chem. Soc. Rev. 41, 7403–7430.CrossRefPubMedGoogle Scholar
  4. 4.
    N. Mizuno, K. Yamaguchi, and K. Kamata (2005). Coord. Chem. Rev. 249, 1944–1956.CrossRefGoogle Scholar
  5. 5.
    Y. F. Song and R. Tsunashima (2012). Chem. Soc. Rev. 41, 7384–7402.CrossRefPubMedGoogle Scholar
  6. 6.
    L. J. Zhang and T. J. Webster (2009). Nanotoday 4, 66–80.CrossRefGoogle Scholar
  7. 7.
    D. G. Kurth, P. Lehmann, D. Volkmer, A. Müller, and D. Schwahn (2000). Dalton Trans. 21, 3989–3998.CrossRefGoogle Scholar
  8. 8.
    P. C. Yin, D. Li, and T. B. Liu (2012). Chem. Soc. Rev. 41, 7368–7383.CrossRefPubMedGoogle Scholar
  9. 9.
    A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann, P. Kögerler, C. Rosu, and E. B. Dipl (2001). Angew. Chem. 113, 4158–4161.CrossRefGoogle Scholar
  10. 10.
    T. Ito, K. Inumaru, and M. Misono (2001). Chem. Mater. 13, 824–831.CrossRefGoogle Scholar
  11. 11.
    Y. Shen, J. Peng, H. Q. Zhang, and X. Yu (2012). Inorg. Chem. 51, 5146–5151.CrossRefPubMedGoogle Scholar
  12. 12.
    T. B. Liu, E. Diemann, H. L. Li, and A. W. M. Dress (2003). Nature 426, 59–62.CrossRefPubMedGoogle Scholar
  13. 13.
    D. Li, J. Song, P. C. Yin, S. Simotwo, A. J. Bassler, Y. Y. Aung, J. E. Roberts, K. I. Hardcastle, C. L. Hill, and T. B. Liu (2011). J. Am. Chem. Soc. 133, 14010–14016.CrossRefPubMedGoogle Scholar
  14. 14.
    P. C. Yin, D. Li, and T. B. Liu (2012). Chem. Soc. Rev. 41, 7368–7383.CrossRefPubMedGoogle Scholar
  15. 15.
    Z. H. Kang, E. B. Wang, M. Jiang, S. Y. Lian, Y. G. Li, and C. W. Hu (2003). Eur. J. Inorg. Chem. 2, 370–376.CrossRefGoogle Scholar
  16. 16.
    Z. H. Kang, E. B. Wang, M. Jiang, and S. Y. Lian (2004). Nanotechnology 15, 55–58.CrossRefGoogle Scholar
  17. 17.
    K. Inumaru (2006). Catal. Surv. Asia 10, 151–160.CrossRefGoogle Scholar
  18. 18.
    Z. F. Xin, J. Peng, T. Wang, B. Xue, Y. M. Kong, L. Li, and E. B. Wang (2006). Inorg. Chem. 45, 8856–8858.CrossRefPubMedGoogle Scholar
  19. 19.
    Y. Shen, J. Peng, H. J. Pang, P. P. Zhang, D. Chen, C. Y. Chen, H. Q. Zhang, C. L. Meng, and Z. M. Su (2011). Chem. Eur. J. 17, 3657–3662.CrossRefPubMedGoogle Scholar
  20. 20.
    Y. Shen, J. Peng, C. Y. Chen, H. Q. Zhang, C. L. Meng, and X. L. Li (2011). Chem. Commun. 14, 221–224.Google Scholar
  21. 21.
    H. Q. Zhang, J. Peng, Y. Shen, X. Yu, F. Zhang, J. L. Mei, B. Li, and L. M. Zhang (2012). Chem. Commun. 48, 4462–4464.CrossRefGoogle Scholar
  22. 22.
    Y. Shen, J. Peng, H. Q. Zhang, C. L. Meng, and F. Zhang (2012). J. Solid State Chem. 185, 225–228.CrossRefGoogle Scholar
  23. 23.
    K. Okamoto, S. Uchida, T. Ito, and N. Mizuno (2007). J. Am. Chem. Soc. 129, 7378–7384.CrossRefPubMedGoogle Scholar
  24. 24.
    Y. Ogasawara, S. Uchida, T. Maruichi, R. Ishikawa, N. Shibata, Y. Ikuhara, and N. Mizuno (2013). Chem. Mater. 25, 905–911.CrossRefGoogle Scholar
  25. 25.
    J. Z. He, H. Pang, W. Q. Wang, Y. Zhang, B. Yan, X. R. Li, and S. J. Li (2013). Dalton Trans. 42, 15637–15644.CrossRefPubMedGoogle Scholar
  26. 26.
    K. Bhattacharjee, K. K. Chattopadhyay, and G. C. Das (2015). J. Phys. Chem. C 119, 1536–1547.CrossRefGoogle Scholar
  27. 27.
    R. R. Meng, Q. Li, G. Wang, and J. Y. Niu (2018). Mater. Chem. Phys. 207, 186–193.CrossRefGoogle Scholar
  28. 28.
    G. Wang, Y. K. Wang, R. R. Meng, X. X. Xu, and J. Y. Niu (2018). Dalton Trans. 47, 7730–7738.CrossRefPubMedGoogle Scholar
  29. 29.
    S. Tadepalli, J. M. Slocik, M. K. Gupta, R. R. Naik, and S. Singamaneni (2017). Chem. Rev. 117, 12705–12763.CrossRefPubMedGoogle Scholar
  30. 30.
    O. Ostroverkhova (2016). Chem. Rev. 116, 13279–13412.CrossRefPubMedGoogle Scholar
  31. 31.
    G. Wang, J. W. Ji, and X. X. Xu (2014). J. Mater. Chem. C 2, 1977–1981.CrossRefGoogle Scholar
  32. 32.
    J. H. Choi, J. K. Kim, D. R. Park, S. Park, J. Yi, and I. K. Song (2011). Catal. Commun. 14, 48–51.CrossRefGoogle Scholar
  33. 33.
    D. P. Bhopate, P. G. Mahajan, K. M. Garadkar, G. B. Kolekar, and S. R. Patil (2015). Luminescence 32, 1055–1063.CrossRefGoogle Scholar
  34. 34.
    T. Okuhara, N. Mizuno, and M. Misono (1996). Adv. Catal. 41, 113–252.Google Scholar
  35. 35.
    Y. H. Feng, Z. G. Han, J. Peng, J. Lu, B. Xue, L. Li, H. Y. Ma, and E. B. Wang (2006). Mater. Lett. 60, 1588–1593.CrossRefGoogle Scholar
  36. 36.
    B. F. Chen, F. B. Li, Z. J. Huang, T. Lu, Y. Yuan, J. L. Yu, and G. Q. Yuan (2012). RSC Adv. 2, 11449–11456.CrossRefGoogle Scholar
  37. 37.
    H. N. Miras, E. F. Wilsonw, and L. Cronin (2009). Chem. Commun. 11, 1297–1311.CrossRefGoogle Scholar
  38. 38.
    J. H. Son, C. A. Ohlin, R. L. Johnson, P. Yu, and W. H. Casey (2013). Chem. Eur. J. 19, 5191–5197.CrossRefPubMedGoogle Scholar
  39. 39.
    S. Pant, H. B. Tripathi, and D. D. Pant (1994). J. Photochem. Photobio. A 81, 7–11.CrossRefGoogle Scholar
  40. 40.
    A. D. Matuszek, A. S. A. Karocki, G. Stochel, and L. Fiedor (2005). Inorg. Chem. 10, 453–462.Google Scholar
  41. 41.
    J. Vestfrid, M. Botoshansky, J. H. Palmer, A. C. Durrell, H. B. Gray, and Z. Gross (2011). J. Am. Chem. Soc. 133, 12899–12901.CrossRefPubMedGoogle Scholar
  42. 42.
    L. L. Li, Y. L. Liu, R. Q. Li, Z. H. Leng, and S. C. Gan (2015). RSC Adv. 5, 7049–7057.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ruru Meng
    • 1
  • Xiaomei He
    • 1
  • Jingjing Chen
    • 1
  • Jing Yang
    • 1
  • Guan Wang
    • 1
    Email author
  1. 1.Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical EngineeringHenan UniversityKaifengChina

Personalised recommendations