Advertisement

Cation–π Interaction of the Univalent Silver Cation with [2.2.2]Paracyclophane in the Gas Phase and in the Solid State: Experimental and Theoretical Study

  • Blanka Klepetářová
  • Emanuel Makrlík
  • David Sýkora
  • Stanislav Böhm
  • Magdalena Kvíčalová
  • Petr Vaňura
Original Paper
  • 7 Downloads

Abstract

Employing electrospray ionization mass spectrometry, it was proven experimentally that the [2.2.2]paracyclophane–Ag+ complex (i.e., [Ag(C24H24)]+) exists in the gas phase. Further, applying quantum chemical DFT calculations, the most probable structure of this cationic complex [Ag(C24H24)]+ was derived. Finally, in the solid state, the complex [2.2.2]paracyclophane–silver triflate–monohydrate (i.e., C24H24–AgCF3SO3–H2O), crystallizing in the monoclinic system with the centrosymmetric space group P21/c, was prepared and analysed by X-ray crystallography.

Graphical Abstract

Keywords

Univalent silver cation [2.2.2]Paracyclophane Cation–π interaction DFT calculations X-ray crystallography 

Notes

Acknowledgements

This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Project No.: 42900/1312/3114 entitled “Environmental Aspects of Sustainable Development of Society,” as well as by the Czech Ministry of Education, Youth, and Sports (Project MSMT No.:20/2015).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10876_2018_1461_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. 1.
    D. A. Dougherty (1996). Science 271, 163.CrossRefGoogle Scholar
  2. 2.
    S. Mahadevi and G. N. Sastry (2013). Chem. Rev. 113, 2100.CrossRefGoogle Scholar
  3. 3.
    J. M. Maier, P. Li, J. Hwang, M. D. Smith, and K. D. Shimizu (2015). J. Am. Chem. Soc. 137, 8014.CrossRefGoogle Scholar
  4. 4.
    S. V. Lindeman, R. Rathore, and J. K. Kochi (2000). Inorg. Chem. 39, 5707.CrossRefGoogle Scholar
  5. 5.
    J. C. Ma and D. A. Dougherty (1997). Chem. Rev. 97, 1303.CrossRefGoogle Scholar
  6. 6.
    C. O. Ulloa, M. Ponce-Vargasb, R. de Mattos Piccoli, G. F. Caramori, G. Frenking, A. Muñoz-Castro (2015). RSC Adv. 5, 7803.CrossRefGoogle Scholar
  7. 7.
    K. S. Kim, P. Tarakeshwar, and J. Y. Lee (2000). Chem. Rev. 100, 4145.CrossRefGoogle Scholar
  8. 8.
    N. Zacharias and D. A. Dougherty (2002). Trends Pharm. Sci. 23, 281.CrossRefGoogle Scholar
  9. 9.
    G. W. Gokel (2003). Chem. Commun. 2847.Google Scholar
  10. 10.
    D. Schröder, H. Schwarz, J. Hrušák, and P. Pyykkö (1998). Inorg. Chem. 37, 624.CrossRefGoogle Scholar
  11. 11.
    A. Gapeev, C. N. Yang, S. J. Klippenstein, and R. C. Dunbar (2000). J. Phys. Chem. A 104, 3246.CrossRefGoogle Scholar
  12. 12.
    S. Tsuzuki, M. Yoshida, T. Uchimaru, and M. Mikami (2001). J. Phys. Chem. A 105, 769.CrossRefGoogle Scholar
  13. 13.
    H. Huang and M. T. Rodgers (2002). J. Phys. Chem. A 106, 4277.CrossRefGoogle Scholar
  14. 14.
    Y. Mo, G. Subramanian, J. Gao, and D. M. Ferguson (2002). J. Am. Chem. Soc. 124, 4832.CrossRefGoogle Scholar
  15. 15.
    A. S. Reddy and G. N. Sastry (2005). J. Phys. Chem. A 109, 8893.CrossRefGoogle Scholar
  16. 16.
    D. Vijay and G. N. Sastry (2008). Phys. Chem. Chem. Phys. 10, 582.CrossRefGoogle Scholar
  17. 17.
    K. Sakurai, T. Mizuno, H. Hiroaki, K. Gohda, J. Oku, and T. Tanaka (2005). Angew. Chem. Int. Ed. 44, 6180.CrossRefGoogle Scholar
  18. 18.
    J. L. Pierre, P. Baret, P. Chautemps, and M. Armand (1981). J. Am. Chem. Soc. 103, 2986.CrossRefGoogle Scholar
  19. 19.
    J. Gross, G. Harder, A. Siepen, J. Harren, F. Vögtle, H. Stephan, K. Gloe, B. Ahlers, K. Cammann, and K. Rissanen (1996). Chem. Eur. J. 2, 1585.CrossRefGoogle Scholar
  20. 20.
    C. Cohen-Addad, P. Baret, P. Chautemps, and J. L. Pierre (1983). Acta Crystallogr. Sect. C Cryst. Struct. Commun. C 39, 1346.CrossRefGoogle Scholar
  21. 21.
    E. G. Buchanan, J. C. Dean, T. S. Zwier, and E. L. Sibert III (2013). J. Chem. Phys. 138, 064308.CrossRefGoogle Scholar
  22. 22.
    APEX3, SAINT-Bruker, APEX3, SAINT (Bruker AXS Inc., Madison, Wisconsin, USA, 2015).Google Scholar
  23. 23.
    A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, and M. Camalli (1994). J. Appl. Crystallogr. 27, 435.Google Scholar
  24. 24.
    P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, and D. J. Watkin (2003). J. Appl. Crystallogr. 36, 1487.CrossRefGoogle Scholar
  25. 25.
    E. Makrlík, S. Böhm, D. Sýkora, B. Klepetářová, P. Vaňura, and M. Polášek (2015). Chem. Phys. Lett. 642, 39.CrossRefGoogle Scholar
  26. 26.
    J.-D. Chai and M. Head-Gordon (2008). Phys. Chem. Chem. Phys. 10, 6615.CrossRefGoogle Scholar
  27. 27.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C.01 (Gaussian Inc., Wallingford, CT, 2009).Google Scholar
  28. 28.
    F. Weigend and R. Ahlrichs (2005). Phys. Chem. Chem. Phys. 7, 3297.CrossRefGoogle Scholar
  29. 29.
    J. Kříž, J. Dybal, E. Makrlík, P. Vaňura, and B. A. Moyer (2011). J. Phys. Chem. B 115, 7578.CrossRefGoogle Scholar
  30. 30.
    E. Makrlík, M. Bureš, P. Vaňura, and Z. Asfari (2014). Monatsh. Chem. 145, 1395.CrossRefGoogle Scholar
  31. 31.
    E. Makrlík, V. Novák, and P. Vaňura (2015). Monatsh. Chem. 146, 863.CrossRefGoogle Scholar
  32. 32.
    E. Makrlík, S. Böhm, P. Vaňura, and P. Ruzza (2015). Mol. Phys. 113, 1472.CrossRefGoogle Scholar
  33. 33.
    E. Makrlík, M. Bureš, P. Vaňura, and Z. Asfari (2016). J. Mol. Liq. 218, 473.CrossRefGoogle Scholar
  34. 34.
    E. Makrlík, D. Sýkora, S. Böhm, and P. Vaňura (2018). J. Clust. Sci. 29, 21.CrossRefGoogle Scholar
  35. 35.
    E. Makrlík, S. Böhm, D. Sýkora, M. Kvíčalová, and P. Vaňura (2018). Acta Chim. Slov. 65, 475.CrossRefGoogle Scholar
  36. 36.
    S. F. Boys and F. Bernardi (1970). Mol. Phys. 19, 553.CrossRefGoogle Scholar
  37. 37.
    F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt, and J. H. van Rijdt (1994). Chem. Rev. 94, 1873.CrossRefGoogle Scholar
  38. 38.
    P. Saarenketo, R. Suontamo, T. Jödicke, K. Rissanen (2000). Organometallics 19, 2346.CrossRefGoogle Scholar
  39. 39.
    Y. Chen and P. B. Armentrout (1993). Chem. Phys. Lett. 210, 123.CrossRefGoogle Scholar
  40. 40.
    B. Klepetářová, E. Makrlík, J. Jaklová Dytrtová, S. Böhm, P. Vaňura, J. Storch (2015). J. Mol. Struct. 1097, 124.Google Scholar
  41. 41.
    E. Makrlík, B. Klepetářová, D. Sýkora, S. Böhm, P. Vaňura, and J. Storch (2015). Chem. Phys. Lett. 635, 355.CrossRefGoogle Scholar
  42. 42.
    L. J. Farrugia (2012). J. Appl. Crystallogr. 45, 849.CrossRefGoogle Scholar
  43. 43.
    H. C. Kang, A. W. Hanson, B. Eaton, and V. Boekelheide (1985). J. Am. Chem. Soc. 107, 1979.CrossRefGoogle Scholar
  44. 44.
    P. G. Jones, P. Bubenitschek, F. Heirtzler, and H. Hopf (1996). Acta Crystallogr. Sect. C Cryst. Struct. Commun. C 52, 1380.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Blanka Klepetářová
    • 1
  • Emanuel Makrlík
    • 1
  • David Sýkora
    • 2
  • Stanislav Böhm
    • 2
  • Magdalena Kvíčalová
    • 1
  • Petr Vaňura
    • 2
  1. 1.Faculty of Environmental SciencesCzech University of Life Sciences, PraguePrague 6-SuchdolCzech Republic
  2. 2.University of Chemistry and Technology, PraguePrague 6Czech Republic

Personalised recommendations