Advertisement

Journal of Cluster Science

, Volume 30, Issue 1, pp 11–24 | Cite as

Utilization of Chemically Synthesized Super Paramagnetic Iron Oxide Nanoparticles in Drug Delivery, Imaging and Heavy Metal Removal

  • P. Durga Sruthi
  • Chamarthy Sai Sahithya
  • C. Justin
  • C. SaiPriya
  • Karanam Sai Bhavya
  • P. Senthilkumar
  • Antony V. SamrotEmail author
Original Paper
  • 151 Downloads

Abstract

In this study, Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) were produced by chemical co-precipitation method. The produced SPIONs were exploited for the production of core–shell SPIONs for drug delivery against bacteria and cancer cells, while the naked SPIONs were used as contrasting agent in X-ray imaging and also for heavy metal removal. Core–shell SPIONs were prepared by a series of steps comprising the synthesis by chemical co-precipitation method, functionalized with a surfactant, followed by coating with drug—itraconazole and encapsulation with biopolymer (either with Polyhydroxybutyrate or polysaccharide derived from Terminalia catappa). Further characterization of these core–shell SPIONs was done with various microscopic and spectroscopic analyses. Drug encapsulation and release efficiency were studied. In-vitro drug release efficiency was assessed by antibacterial activity and anticancer activity. Further, the ability of the SPIONs as contrasting agent in X-ray imaging and heavy metal removal was also assessed.

Keywords

SPIONs Chemical co-precipitation Surfactant Biopolymer coating Contrasting agent 

Notes

Funding

The work was not supported by any funding agency.

Compliance with Ethical Standards

Conflict of interest

The authors have no conflict of interest.

References

  1. 1.
    V. I. Shubayev, T. R. Pisanic II, and S. Jin (2009). Adv. Drug Deliv. Rev. 61, (6), 467–477.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    M. Rai and A. Ingle (2012). Appl. Microbiol. Biotechnol. 94, (2), 287–293.PubMedCrossRefGoogle Scholar
  3. 3.
    R. Owen and D. Michael (2005). Mar. Pollut. Bull. 50, (6), 609–612.PubMedCrossRefGoogle Scholar
  4. 4.
    K. Murugan, D. Dinesh, D. Nataraj, J. Subramaniam, P. Amuthavalli, J. Madhavan, A. Rajasekar, M. Rajan, K. P. Thiruppathi, S. Kumar, and A. Higuchi (2017). Environ. Sci. Pollut. Res. 25, (11), 10504–10514.CrossRefGoogle Scholar
  5. 5.
    M. M. Reza, C. Johnson, S. Hatziantoniou, and C. Demetzos (2008). J. Liposome Res. 18, (4), 309–327.CrossRefGoogle Scholar
  6. 6.
    M. Rajan, P. Krishnan, P. Pradeepkumar, M. Jeyanthinath, M. Jeyaraj, M. P. Ling, P. Arulselvan, A. Higuchi, M. A. Munusamy, R. Arumugam, G. Benelli, K. Murugan, and S. S. Kumar (2017). RSC Adv. 7, (73), 46271–46285.CrossRefGoogle Scholar
  7. 7.
    D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, and M. Muhammed (2001). J. Magn. Magn. Mater. 225, 30–36.CrossRefGoogle Scholar
  8. 8.
    S. R. Dave and X. Gao (2009). Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, (6), 583–609.PubMedCrossRefGoogle Scholar
  9. 9.
    E. Amstad, M. Textor, and E. Reimhult (2011). Nanoscale 3, (7), 2819–2843.PubMedCrossRefGoogle Scholar
  10. 10.
    A. Akbarzadeh, M. Samiei, and S. Davaran (2012). Nanoscale Res. Lett. 7, (1), 144.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    D. Ling, N. Lee, and T. Hyeon (2015). Acc. Chem. Res. 48, (5), 1276–1285.PubMedCrossRefGoogle Scholar
  12. 12.
    S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi (2011). Adv. Colloid Interface Sci. 166, (1–2), 8–23.PubMedCrossRefGoogle Scholar
  13. 13.
    L. Li, W. Jiang, K. Luo, H. Song, F. Lan, Y. Wu, and G. Zhongwei (2013). Theranostics. 3, (8), 595–615.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    J. H. Lee, Y. M. Huh, Y. W. Jun, J. W. Seo, J. T. Jang, H. T. Song, S. Kim, E. J. Cho, H. G. Yoon, J. S. Suh, and J. Cheon (2007). Nat. Med. 13, (1), 95–99.PubMedCrossRefGoogle Scholar
  15. 15.
    C. S. M. Berman, P. Walczak, and J. W. Bulte (2011). WileyInterdiscip. Rev. Nanomed. Nanobiotechnol. 3, (4), 343–355.CrossRefGoogle Scholar
  16. 16.
    W. Yantasee, C. L. Warner, T. Sangvanich, R. S. Addleman, T. G. Carter, R. J. Wiacek, G. E. Fryxell, C. Timchalk, and M. G. Warner (2007). Environ. Sci. Technol. 41, (14), 5114–5119.PubMedCrossRefGoogle Scholar
  17. 17.
    M. Sethi and S. K. Chakarvarti (2015). Int. J. Pharmtech. Res. 8, (6), 292–299.Google Scholar
  18. 18.
    A. J. Giustini, A. A. Petryk, S. M. Cassim, J. A. Tate, I. Baker, and J. P. Hoopes (2011). Nano Life. 1, (01n02), 17–32.CrossRefGoogle Scholar
  19. 19.
    T. L. Kalber, K. L. Ordidge, P. Southern, M. R. Loebinger, P. G. Kyrtatos, Q. A. Pankhurst, M. F. Lythgoe, and S. M. Janes (2016). Int. J. Nanomed. 11, 1973–1983.CrossRefGoogle Scholar
  20. 20.
    R. Tietze, J. Zaloga, H. Unterweger, S. Lyer, R. P. Friedrich, C. Janko, M. Pöttler, S. Dürr, and C. Alexiou (2015). Biochem. Biophys. Res. Commun. 468, (3), 463–470.PubMedCrossRefGoogle Scholar
  21. 21.
    Y. H. Bae and K. Park (2011). J. Control Release. 153, (3), 198–205.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    A. Ito, Y. Takizawa, H. Honda, K. Hata, H. Kagami, M. Ueda, and T. Kobayashi (2004). Tissue Eng. 10, (5–6), 873–880.PubMedCrossRefGoogle Scholar
  23. 23.
    Q. M. Kainz and O. Reiser (2014). Acc. Chem. Res. 47, (2), 667–677.PubMedCrossRefGoogle Scholar
  24. 24.
    V. Mulens, M. P. Morales, F. Domingo, D. F. Barber (2013). ISRN Nanomater.Google Scholar
  25. 25.
    P. N. Dave, L. V. Chopda (2014). J. Nanotechnol. Google Scholar
  26. 26.
    B. S. Inbaraj and B. Chen (2012). Int. J. Nanomed. 7, 4419–4432.Google Scholar
  27. 27.
    S. S. Khiabani, M. Farshbaf, A. Akbarzadeh, and S. Davaran (2017). Artif. Cells Nanomed. Biotechnol. 45, (1), 6–17.CrossRefGoogle Scholar
  28. 28.
    P. Krishnan, M. Rajan, S. Kumari, S. Sakinah, S. P. Priya, F. Amira, L. Danjuma, M. P. Ling, S. Fakurazi, P. Arulselvan, A. Higuchi, S. Kumar, A. T. Aziz, D. Nataraj, B. Vaseeharan, A. Canale, and G. Benelli (2017). Sci. Rep. 7, (1), 10962.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    K. Murugan, J. Wei, M. S. Alsalhi, M. Nicoletti, M. Paulpandi, C. M. Samidoss, D. Dinesh, B. Chandramohan, C. Paneerselvam, J. Subramaniam, C. Vadivalagan, H. Wei, P. Amuthavalli, A. Jaganathan, S. Devanesan, A. Higuchi, S. Kumar, A. T. Aziz, D. Nataraj, B. Vaseeharan, A. Canale, and G. Benelli (2017). J. Parasitol. Res. 116, (2), 495–502.CrossRefGoogle Scholar
  30. 30.
    P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, and Z. F. Liu (2012). Sci. Total Environ. 424, 1–10.PubMedCrossRefGoogle Scholar
  31. 31.
    A. K. Gupta and M. Gupta (2005). Biomaterials 26, (18), 3995–4021.PubMedCrossRefGoogle Scholar
  32. 32.
    W. Wu, Q. He, and C. Jiang (2008). Nanoscale Res. Lett. 3, (11), 397–415.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    S. Arora Wahajuddin (2012). Int. J. Nanomed. 7, 3445–3471.CrossRefGoogle Scholar
  34. 34.
    G. Kandasamy and D. Maity (2015). Int. J. Pharm. 496, (2), 191–218.PubMedCrossRefGoogle Scholar
  35. 35.
    S. I. Gràcia Lanas (2017). Fluoride and Metal Ions Removal from Water by Adsorption on Nanostructured Materials.Google Scholar
  36. 36.
    M. Mahdavi, M. B. Ahmad, M. J. Haron, F. Namvar, B. Nadi, M. Z. Rahman, and J. Amin (2013). Molecules 18, (7), 7533–7548.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    P. Pantziarka, V. Sukhatme, G. Bouche, L. Meheus, and V. P. Sukhatme (2015). Ecancermedicalscience. 9, 521.PubMedPubMedCentralGoogle Scholar
  38. 38.
    S. F. Chin, M. Makha, C. L. Raston (2006). in Nanoscience and Nanotechnology, 2006. ICONN’06. International Conference on. IEEE. Google Scholar
  39. 39.
    S. Gopi, A. Amalraj, S. Thomas (2016). Drug Des. 5, (2)Google Scholar
  40. 40.
    M. E. El-Zowalaty, S. H. H. Al Ali, M. I. Husseiny, B. M. Geilich, T. J. Webster, and M. Z. Hussein (2015). Int. J. Nanomed. 10, 3269–3274.CrossRefGoogle Scholar
  41. 41.
    A. V. Samrot, T. Akanksha Jahnavi, S. Padmanaban, S. A. Philip, U. Burman, and A. M. Rabel (2016). Appl. Nanosci. 6, 1219–1231.CrossRefGoogle Scholar
  42. 42.
    M. K. Rao, K. V. Ramanjaneyulu, S. K. Reehana, D. K. Rao, D. L. Sujana, and J. N. S. Kumar (2014). World J. Pharm. Res. 3, (10), 777–787.Google Scholar
  43. 43.
    S. H. Hussein-Al-Ali, M. E. El-Zowalaty, M. Z. Hussein, B. M. Geilich, and T. J. Webster (2014). Int. J. Nanomed. 9, 3801–3814.CrossRefGoogle Scholar
  44. 44.
    J. J. Souchek, A. L. Davis, T. K. Hill, M. B. Holmes, B. Qi, P. K. Singh, S. J. Kridel, and A. M. Mohs (2017). Mol. Cancer Ther. 16, (9), 1819–1830.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    T. Wang, J. Hou, C. Su, L. Zhao, and Y. Shi (2017). J. Nanobiotechnol. 15, (1), 7.CrossRefGoogle Scholar
  46. 46.
    C. Justin, S. A. Philip, and A. V. Samrot (2017). Appl. Nanosci. 7, (7), 463–475.CrossRefGoogle Scholar
  47. 47.
    C. H. Tan, Y. C. Mooa, M. Z. Matjafria, H. S. Lim (2014). in Optical Sensing and Detection III 9141, 91410N. International Society for Optics and Photonics.Google Scholar
  48. 48.
    G. K. P. Merline, M. Chitra, and P. Krishnan (2015). Opt. Int. J. Light Electron Opt. 126, (24), 5339–5341.CrossRefGoogle Scholar
  49. 49.
    K. A. Al-Saad, M. A. Amr, D. T. Hadi, R. S. Arar, M. M. Al-Sulaiti, T. A. Abdulmalik, N. M. Alsahamary, and J. C. Kwak (2012). Arab. J. Nucl. Sci. Appl. 45, (2), 335–346.Google Scholar
  50. 50.
    A. V. Samrot, B. Suvedhaa, C. S. Sahithya, A. Madankumar (2018). J CLUST SCI. 1–4.Google Scholar
  51. 51.
    D. Dorniani, M. Z. Bin-Hussein, A. U. Kura, S. Fakurazi, A. H. Shaari, and Z. Ahmad (2013). Drug Des. Dev. Ther. 7, 1015–1026.CrossRefGoogle Scholar
  52. 52.
    T. Saranya, K. Parasuraman, M. Anbarasu, and K. Balamurugan (2015). Nano Vis. 5, (4–6), 149–154.Google Scholar
  53. 53.
    B. P. H. Do, B. D. Nguyen, H. D. Nguyen, and P. T. Nguyen (2013). Adv. Nat. Sci. Nanosci. Nanotech. 4, 045016.CrossRefGoogle Scholar
  54. 54.
    P. Burnham, N. Dollahon, C. H. Li, A. J. Viescas, G. C. Papaefthymiou (2013). J. Nanopart. 181820.Google Scholar
  55. 55.
    K. Malarvizhi, D. R. Devi, A. Raymond, and B. N. V. Hari (2014). Int. J. Sci. Eng. Technol. 3, (2), 109–115.Google Scholar
  56. 56.
    A. Rezaei, A. Nasirpour, and H. Tavanai (2016). Food Hydrocoll. 60, 461–469.CrossRefGoogle Scholar
  57. 57.
    M. Bashir and S. Haripriya (2016). Int. J. Biol. Macromol. 93, 476–482.PubMedCrossRefGoogle Scholar
  58. 58.
    J. Nisha, N. Mudaliar, P. Senthilkumar, G. Narendrakumar, and A. V. Samrot (2012). Afr. J. Microbiol. Res. 6, (15), 3623–3630.Google Scholar
  59. 59.
    A. S. Jennifer, F. Ali, P. S. Jyotsana, P. Senthilkumar, and A. V. Samrot (2014). J. Pure Appl. Microbiol. 8, (6), 4817–4821.Google Scholar
  60. 60.
    S. Yalcin, G. Unsoy, P. Mutlu, R. Khodadust, and U. Gunduz (2014). Am. J. Ther. 21, (6), 453–461.PubMedCrossRefGoogle Scholar
  61. 61.
    H. E. Ghandoor, H. M. Zida, M. H. H. Khalil, and M. I. M. Ismail (2012). Int. J. Electrochem. Sci. 7, 5734–5745.Google Scholar
  62. 62.
    A. Marinin (2012). Synthesis and characterization of superparamagnetic iron oxide nanoparticles coated with silica. (Master Thesis, Stockholm). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121520.
  63. 63.
    M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, and Q. Zhang (2012). J. Hazard. Mater. 211, 317–331.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. Durga Sruthi
    • 1
  • Chamarthy Sai Sahithya
    • 1
  • C. Justin
    • 1
  • C. SaiPriya
    • 1
  • Karanam Sai Bhavya
    • 1
  • P. Senthilkumar
    • 2
  • Antony V. Samrot
    • 1
    Email author
  1. 1.Department of Biotechnology, School of Bio and Chemical EngineeringSathyabama Institute of Science and TechnologyChennaiIndia
  2. 2.Department of Chemical Engineering, School of Bio and Chemical EngineeringSathyabama Institute of Science and TechnologyChennaiIndia

Personalised recommendations