Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1305–1311 | Cite as

The Density Functional Theory Investigation on the Structural, Relative Stable and Electronic Properties of Bimetallic PbnSbn (n = 2–12) Clusters

  • Gaofeng Li
  • Xiumin Chen
  • Hongwei Yang
  • Baoqiang Xu
  • Bin Yang
  • Dachun Liu
Original Paper
  • 66 Downloads

Abstract

Recently, bimetallic clusters have attracted a great deal of attention from research community because clusters yield intriguing properties ranging from the molecular and the bulk materials, which have extensive applications in nanomaterials. Clusters with tailored properties are governed by cluster size, geometrical structures, and elemental composition. Motivated by that we systematically investigated the structural, relative stable, and electronic properties of PbnSbn (n = 2–12) clusters by means of density functional theory. In this paper, the ground state structures, average binding energies, fragmentation energies, HOMO–LUMO gaps, and density of states were theoretically calculated. The results demonstrate that the large clusters adopt distorted ellipsoid structures with no symmetry. The average binding energies tend to be stable when cluster size n ≥ 4. Pb5Sb5 and Pb9Sb9 clusters are more chemically stable compared with the neighboring PbnSbn clusters, which may serve as the cluster assembled materials. The density of states of PbnSbn (n = 2–12) clusters moving toward more negative energy levels with the growing cluster size n, which also becoming more nonlocalized as the clusters size n increasing.

Keywords

Bimetallic clusters Geometrical structures Density functional theory Electronic properties PbnSbn clusters 

Notes

Acknowledgements

This work was supported by the Regional Foundation of the NSFC (51664032), General Program of the NSFC (51474116), Program of China Scholarships Council (No. 201808530022), Joint Foundation of the NSFC-Yunnan province (U1502271), Cultivating Plan Program for the Leader in Science and Technology of Yunnan Province (2014HA003), Program for Nonferrous Metals Vacuum Metallurgy Innovation Team of Ministry of Science and Technology (2014RA4018), National Key Research and Development Program of China (2016YFC0400404), Youth Program of NSFC (51504115) and Program for Innovative Research Team in University of Ministry of Education of China (IRT_17R48), Science and Technology Talent Cultivation Plan of Yunnan Province, China (2017HB009).

Supplementary material

10876_2018_1450_MOESM1_ESM.docx (200 kb)
Supplementary material 1 (DOCX 199 kb)

References

  1. 1.
    M. L. Polak, G. Gerber, J. Ho, and W. C. Lineberger (1992). J. Chem. Phys. 97, 8990–9000.CrossRefGoogle Scholar
  2. 2.
    H. Yang, Y. Wang, X. Chen, X. Zhao, L. Gu, H. Huang, J. Yan, C. Xu, G. Li, J. Wu, A. J. Edwards, B. Dittrich, Z. Tang, D. Wang, L. Lehtovaara, H. Häkkinen, and N. Zheng (2016). Nat. Commun. 7, 12809.CrossRefGoogle Scholar
  3. 3.
    I. M. L. Billas, A. Châtelain, and W. A. de Heer (1994). Science 265, 1682–1684.CrossRefGoogle Scholar
  4. 4.
    O. A. Van and R. J. Saykally (1998). Chem. Rev. 98, 2313–2357.CrossRefGoogle Scholar
  5. 5.
    L. Belau, S. E. Wheeler, B. W. Ticknor, M. Ahmed, S. R. Leone, W. D. Allen, and M. A. Duncan (2007). J. Am. Chem. Soc. 129, 10229–10243.CrossRefGoogle Scholar
  6. 6.
    J. Hutter, H. P. Luethi, and F. Diederich (1994). J. Am. Chem. Soc. 116, 750–756.CrossRefGoogle Scholar
  7. 7.
    M. Haertelt, J. T. Lyon, P. Claes, H. J. De, P. Lievens, and A. Fielicke (2012). J. Chem. Phys. 136, 114.CrossRefGoogle Scholar
  8. 8.
    K. D. Rinnen and M. L. Mandich (1992). Phys. Rev. Lett. 69, 1823–1826.CrossRefGoogle Scholar
  9. 9.
    S. Heiles, S. Schäfer, and R. Schäfer (2011). J. Chem. Phys. 135, 034303.CrossRefGoogle Scholar
  10. 10.
    W. Qin, W. C. Lu, Q. J. Zang, L. Z. Zhao, G. J. Chen, C. Z. Wang, and K. M. Ho (2010). J. Chem. Phys. 132, 214509.CrossRefGoogle Scholar
  11. 11.
    S. Schäfer, B. Assadollahzadeh, M. Mehring, P. Schwerdtfeger, and R. Schäfer (2008). J. Phys. Chem. A 112, 12312.CrossRefGoogle Scholar
  12. 12.
    B. Assadollahzadeh, S. Schäfer, and P. Schwerdtfeger (2010). J. Comput. Chem. 31, 929–937.PubMedGoogle Scholar
  13. 13.
    H. Li, Y. Ji, F. Wang, S. F. Li, Q. Sun, and Y. Jia (2011). Phys. Rev. B 83, 075429.CrossRefGoogle Scholar
  14. 14.
    X.-P. Li, W.-C. Lu, Q.-J. Zang, G.-J. Chen, C. Z. Wang, and K. M. Ho (2009). J. Phys. Chem. A 113, 6217–6221.CrossRefGoogle Scholar
  15. 15.
    R. K. Yoo, B. Ruscic, and J. Berkowitz (1992). J. Chem. Phys. 96, 6696–6709.CrossRefGoogle Scholar
  16. 16.
    X. Bai, Q. Zhang, A. Gao, and J. Yang (1009). Comput. Theor. Chem. 2013, 94–102.Google Scholar
  17. 17.
    X. Zhou, J. Zhao, X. Chen, and W. Lu (2005). Phys. Rev. A 72, 053203.CrossRefGoogle Scholar
  18. 18.
    R. O. Jones, O. Ahlstedt, J. Akola, and M. Ropo (2017). J. Chem. Phys. 146, 1291–12100.Google Scholar
  19. 19.
    T. M. Bernhardt, B. Kaiser, and K. Rademann (2002). Phys. Chem. Chem. Phys. 4, 1192–1200.CrossRefGoogle Scholar
  20. 20.
    X. Zhou, J. Zhao, X. Chen, and W. Lu (2005). Phys. Rev. A 72, 053203.CrossRefGoogle Scholar
  21. 21.
    J. J. Melko, U. Werner, R. Mitric, V. Bonacic-Koutecky, and A. W. Castleman Jr. (2011). J. Phys. Chem. A. 115, 10276–10280.CrossRefGoogle Scholar
  22. 22.
    D. Schild, R. Pflaum, G. Riefer, and E. Recknagel (1988). Zeitschrift Für Physik D Atoms Molecules & Clusters 10, 329–335.CrossRefGoogle Scholar
  23. 23.
    S. Yahachi, Y. Kenzi, M. Kazuhiro, and N. Tamotsu (1982). Jpn. J. Appl. Phys. 21, L396.CrossRefGoogle Scholar
  24. 24.
    C. Rajesh and C. Majumder (2007). J. Chem. Phys. 126, 244704.CrossRefGoogle Scholar
  25. 25.
    S. Schafer, S. Heiles, J. A. Becker, and R. Schafer (2008). J. Chem. Phys. 129, 044304.CrossRefGoogle Scholar
  26. 26.
    V. Senz, T. Fischer, P. Oelssner, J. Tiggesbaumker, J. Stanzel, C. Bostedt, H. Thomas, M. Schoffler, L. Foucar, M. Martins, J. Neville, M. Neeb, T. Moller, W. Wurth, E. Ruhl, R. Dorner, H. Schmidt-Bocking, W. Eberhardt, G. Gantefor, R. Treusch, P. Radcliffe, and K. H. Meiwes-Broer (2009). Phys. Rev. Lett. 102, 138303.CrossRefGoogle Scholar
  27. 27.
    C. Rajesh and C. Majumder (2008). J. Chem. Phys. 128, 024308.CrossRefGoogle Scholar
  28. 28.
    X. Chen, K. Deng, C. Xiao, J. Chen, and D. E. Ellis (2011). Comput. Theor. Chem. 971, 73–76.CrossRefGoogle Scholar
  29. 29.
    M. Steinert, W. Wesch, A. Undisz, M. Rettenmayr, W. Nunes, R. Borges, M. Godinho, R. Rubinger, M. Carmo, and N. Sobolev (2008). J. Phys. D: Appl. Phys. 42, 035406.CrossRefGoogle Scholar
  30. 30.
    R. W. Farley, P. Ziemann, and A. W. C. Jr (1989). Zeitschrift Für Physik D Atoms Molecules & Clusters 14, 353–360.CrossRefGoogle Scholar
  31. 31.
    R. Wheeler, K. LaiHing, W. Wilson, J. Allen, R. King, and M. Duncan (1986). J. Am. Chem. Soc. 108, 8101–8102.CrossRefGoogle Scholar
  32. 32.
    K. F. Willey, K. Laihing, T. G. Taylor, and M. A. Duncan (1993). J. Phys. Chem. 97, (29), 7435–7440.CrossRefGoogle Scholar
  33. 33.
    D. Schild, R. Pflaum, K. Sattler, and E. Recknagel (1987). J. Phys. Chem. 91, 2649–2653.CrossRefGoogle Scholar
  34. 34.
    J. J. Melko, S. V. Ong, U. Gupta, J. U. Reveles, J. D’Emidio, S. N. Khanna, and A. W. Castleman (2010). Phys. Chem. C 114, 20907–20916.CrossRefGoogle Scholar
  35. 35.
    E. C. Honea, A. Ogura, C. A. Murray, K. Raghavachari, W. O. Sprenger, M. F. Jarrold, and W. L. Brown (1993). Nature 366, 42–44.CrossRefGoogle Scholar
  36. 36.
    B. Wang, J. Zhao, X. Chen, D. Shi, and G. Wang (2005). Phys. Rev. A 71, 309–315.Google Scholar
  37. 37.
    M. Bo, Y. Wang, Y. Huang, W. Zhou, C. Li, and C. Q. Sun (2014). J. Mater. Chem. C 2, 6090.CrossRefGoogle Scholar
  38. 38.
    B. Song, W. Jiang, B. Yang, X. Chen, B. Xu, L. Kong, D. Liu, and Y. Dai (2016). Metall. Mater. Trans. A 47, 5214–5222.CrossRefGoogle Scholar
  39. 39.
    J. Deng, Y. Lei, S. Wen, and Z. Chen (2015). Int. J. Miner. Process. 140, 43–49.CrossRefGoogle Scholar
  40. 40.
    G. L. Zhang, H. K. Yuan, H. Chen, A. L. Kuang, Y. Li, J. Z. Wang, and J. Chen (2014). J. Chem. Phys. 141, 244304.CrossRefGoogle Scholar
  41. 41.
    M. Zhang, L.-M. He, L.-X. Zhao, X.-J. Feng, and Y.-H. Luo (2009). J. Phys. Chem. C 113, 6491–6496.CrossRefGoogle Scholar
  42. 42.
    G. Gerber and G. Kuscher (1981). Chem. Phys. 60, 119–131.CrossRefGoogle Scholar
  43. 43.
    R. K. Yoo, B. Ruscic, and J. Berkowitz (1993). J. Chem. Phys. 99, 8445–8450.CrossRefGoogle Scholar
  44. 44.
    C. Rajesh, C. Majumder, M. G. R. Rajan, and S. K. Kulshreshtha (2005). Phys. Rev. B 72, 235411.CrossRefGoogle Scholar
  45. 45.
    M. E. Eberhart, R. C. O’Handley, and K. H. Johnson (1984). Phys. Rev. B 29, 1097–1100.CrossRefGoogle Scholar
  46. 46.
    X. Li, B. Kiran, L.-F. Cui, and L.-S. Wang (2005). Phys Rev. Lett. 95, 253401.CrossRefGoogle Scholar
  47. 47.
    Y.-R. Zhao, X.-Y. Kuang, B.-B. Zheng, Y.-F. Li, and S.-J. Wang (2011). J. Phys. Chem. A 115, 569–576.CrossRefGoogle Scholar
  48. 48.
    K. O. Alcantar-Medina, M. Herrera-Trejo, A. Tlahuice-Flores, S. Martinez-Vargas, J. Oliva, and A. I. Martinez (1099). Comput. Theor. Chem. 2017, 55–63.Google Scholar
  49. 49.
    D. Toprek and V. Koteski (1081). Comput. Theor. Chem. 2016, 9–17.Google Scholar
  50. 50.
    Y. Jin, G. Maroulis, X. Kuang, L. Ding, C. Lu, J. Wang, J. Lv, C. Zhang, and M. Ju (2015). Phys. Chem. Chem. Phys. 17, 13590.CrossRefGoogle Scholar
  51. 51.
    X. X. Xia, A. Hermann, X. Y. Kuang, Y. Y. Jin, C. Lu, and X. D. Xing (2016). J. Phys. Chem. C 120, 677–684.CrossRefGoogle Scholar
  52. 52.
    S. Safer, S. Mahtout, K. Rezouali, M. A. Belkhir, and F. Rabilloud (1090). Comput. Theor. Chem. 2016, 23–33.Google Scholar
  53. 53.
    W. G. Sun, J. J. Wang, C. Lu, X. X. Xia, X. Y. Kuang, and A. Hermann (2017). Inorg. Chem. 56, 1241–1248.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gaofeng Li
    • 2
    • 3
  • Xiumin Chen
    • 1
    • 2
    • 3
  • Hongwei Yang
    • 2
    • 3
  • Baoqiang Xu
    • 2
    • 3
  • Bin Yang
    • 2
    • 3
  • Dachun Liu
    • 2
    • 3
  1. 1.State Key Laboratory of Complex Nonferrous Metal Resources Clear UtilizationKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.National Engineering Laboratory for Vacuum MetallurgyKunming University of Science and TechnologyKunmingPeople’s Republic of China
  3. 3.Yunnan Provincial Key Laboratory for Nonferrous Vacuum MetallurgyKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations