Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1313–1319 | Cite as

A Family of \(\left\{ {{\text{Ni}}^{\text{II}}_{2} {\text{Ln}}^{\text{III}}_{2} } \right\}\) Butterfly Complexes: Lanthanide Contraction Effect on the Structures Magnetic Properties

  • Hai-Ling Wang
  • Liang-Bing Sheng
  • Hua-Hong Zou
  • Kai Wang
  • Bo Li
  • Man-Sheng Chen
  • Fu-Pei Liang
Original Paper
  • 108 Downloads

Abstract

Reactions of lanthanide nitrate, nickel nitrate, and polyhydroxyl Schiff-base ligand 2-(((2-hydroxy-3-methoxyphenyl)methylene)amino)-2-(hydroxymethyl)-1,3-propanediol (H4L) gave rise to a family of butterfly heterotetranuclear 3d–4f clusters formulated as [Ln2Ni2(H2L)2(μ3-OCH3)2(CH3CN)2(NO3)4]·2CH3OH·2H2O [Ln = Pr (1), Sm (2), Eu (3), Tb (4), Er (5)]. Single-crystal X-ray diffraction (XRD) reveals these complexes crystallize in the monoclinic space group P21/c. Both Ln1 and its symmetric Ln1A are coordinated to nine oxygen atoms and consist of two ligands with the same coordination mode μ3.η1:η2:η1:η2:η1, two nitrate ions and one μ3-OCH3. The five heterotetranuclear \({\text{Ni}}^{\text{II}}_{2} {\text{Ln}}^{\text{III}}_{2}\) complexes display a central planar butterfly topology. The vertices of the body positions of the butterfly are occupied by NiII ions in all five complexes, which have been characterized by single-crystal X-ray diffraction, infrared spectroscopy, element analyses, powder X-ray diffraction and thermal gravimetric analyses. The magnetic properties of the complexes have been studied. The results show that complexes 1-3, and 5 exhibit antiferromagnetic exchange between the paramagnetic species, and 4 shows strong ferromagnetic interaction.

Graphical Abstract

We have shown the successful design and assembly of a new family of tetranuclear, dicationic, heterometallic \(\left\{ {{\text{Ni}}^{\text{II}}_{2} {\text{Ln}}^{\text{III}}_{2} } \right\}\) complexes characterized by a butterfly-type topology. The results might be promoting the rational design and synthesis of 3d–4f molecule-base magnets materials with fascinating topologies and magnetic behaviours.

Keywords

Schiff-base ligand Butterfly heterotetrauclear Magnetic properties Antiferromagnetic Ferromagnetic 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21601038, 51572050, 21401112, 21461004), Guangxi Natural Science Foundation (Nos. 2015GXNSFDA139007 and 2016GXNSFAA380085), and Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials (EMFM20162107).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10876_2018_1447_MOESM1_ESM.doc (429 kb)
Supplementary material 1 (DOC 429 kb)

References

  1. 1.
    T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, and A. Planes (2005). Nat. Mater. 4, 450–454.CrossRefGoogle Scholar
  2. 2.
    R. Clerac, H. Miyasaka, M. Yamashita, and C. Coulon (2002). J. Am. Chem. Soc. 124, 12837–12844.CrossRefGoogle Scholar
  3. 3.
    X.-J. Kong, L.-S. Long, Z. Zheng, R.-B. Huang, and L.-S. Zheng (2010). Acc. Chem. Res. 43, 201–209.CrossRefGoogle Scholar
  4. 4.
    J. F. Bai, A. V. Virovets, and M. Scheer (2003). Science 300, 781–783.CrossRefGoogle Scholar
  5. 5.
    M. J. Moses, J. C. Fettinger, and B. W. Eichhorn (2003). Science 300, 778–780.CrossRefGoogle Scholar
  6. 6.
    E. G. Mednikov, M. C. Jewell, and L. F. Dahl (2007). J. Am. Chem. Soc. 129, 11619–11630.CrossRefGoogle Scholar
  7. 7.
    J. Chen, Q.-F. Zhang, T. A. Bonaccorso, P. G. Williard, and L.-S. Wang (2014). J. Am. Chem. Soc. 136, 92–95.CrossRefGoogle Scholar
  8. 8.
    H. F. Qian, D. E. Jiang, G. Li, C. Gayathri, A. Das, R. R. Gil, and R. C. Jin (2012). J. Am. Chem. Soc. 134, 16159–16162.CrossRefGoogle Scholar
  9. 9.
    T. Komatsu and A. Tamura (2008). J. Catal. 258, 306–314.CrossRefGoogle Scholar
  10. 10.
    Y. Wang, X.-K. Wan, L. Ren, H. Su, G. Li, S. Malola, S. Lin, Z. Tang, H. Häkkinen, B. K. Teo, Q.-M. Wang, and N. Zheng (2016). J. Am. Chem. Soc. 138, 3278–3281.CrossRefGoogle Scholar
  11. 11.
    S. X. Wang, X. M. Meng, A. Das, T. Li, Y. B. Song, T. T. Cao, X. Y. Zhu, M. Z. Zhu, and R. C. Jin (2014). Angew. Chem. Int. Ed. 53, 2376–2380.CrossRefGoogle Scholar
  12. 12.
    W. J. Du, S. Jin, L. Xiong, M. Chen, J. Zhang, X. J. Zou, Y. Pei, S. X. Wang, and M. Z. Zhu (2017). J. Am. Chem. Soc. 139, 1618–1624.CrossRefGoogle Scholar
  13. 13.
    X. Kang, S. X. Wang, Y. B. Song, S. Jin, G. D. Sun, H. Z. Yu, and M. Z. Zhu (2016). Angew. Chem. Int. Ed. 55, 3611–3614.CrossRefGoogle Scholar
  14. 14.
    S. Petrie and R. Stranger (2002). Inorg. Chem. 41, 2341–2347.CrossRefGoogle Scholar
  15. 15.
    C. J. Brown, F. D. Toste, R. G. Bergman, and K. N. Raymond (2015). Chem. Rev. 115, 3012–3035.CrossRefGoogle Scholar
  16. 16.
    Q.-M. Wang, Y.-M. Lin, and K.-G. Liu (2015). Acc. Chem. Res. 48, 1570–1579.CrossRefGoogle Scholar
  17. 17.
    X.-J. Kong, L.-S. Long, Z. P. Zheng, R.-B. Huang, and L.-S. Zheng (2010). Acc. Chem. Res. 43, 201–209.CrossRefGoogle Scholar
  18. 18.
    F. Xu, H. Miras, R. Scullion, D.-L. Long, J. Thiel, and L. Cronin (2012). Proc. Natl. Acad. Sci. 109, 11609–11612.CrossRefGoogle Scholar
  19. 19.
    K. Griffiths, C. Harding, V. N. Dokorou, E. Loukopoulos, S. I. Sampani, A. Abdul-Sada, G. J. Tizzard, S. J. Coles, G. Lorusso, M. Evangelisti, A. Escuer, and G. E. Kostakis (2017). Eur. J. Inorg. Chem. 3938–3945.  https://doi.org/10.1002/ejic.201700728.CrossRefGoogle Scholar
  20. 20.
    V. Béreau, S. Dhers, J. Costes, C. Duhayon, and J. Sutter (2018). Eur. J. Inorg. Chem. 66–73.  https://doi.org/10.1002/ejic.201701129.CrossRefGoogle Scholar
  21. 21.
    M.-L. Tong, S.-L. Zheng, J.-X. Shi, Y.-X. Tong, H. K. Lee, and X.-M. Chen (2002). J. Chem. Soc. Dalton Trans. 8, 1727–1734.CrossRefGoogle Scholar
  22. 22.
    H. Zhang, J. Zhang, R. Liu, Y. Li, W. Liu, and W. Li (2016). Eur. J. Inorg. Chem. 26, 4134–4143.CrossRefGoogle Scholar
  23. 23.
    L. Sun, H. Chen, C. Ma, and C. Chen (2015). Dalton Trans. 44, 20964–20971.CrossRefGoogle Scholar
  24. 24.
    Y.-L. Zhou, M.-H. Zeng, X.-C. Liu, H. Liang, and M. Kurmoo (2011). Chem. Eur. J. 17, 14084–14093.CrossRefGoogle Scholar
  25. 25.
    H. Zou, L. Sheng, F. Liang, Z. Chen, and Y. Zhang (2015). Dalton Trans. 44, 18544–18552.CrossRefGoogle Scholar
  26. 26.
    F. Habib, P. Lin, J. Long, I. Korobkov, W. Wernsdorfer, and M. Murugesu (2011). J. Am. Chem. Soc. 133, 8830–8833.CrossRefGoogle Scholar
  27. 27.
    Y. Meng, S. Jiang, B. Wang, and S. Gao (2016). Acc. Chem. Res. 49, 2381–2389.CrossRefGoogle Scholar
  28. 28.
    L. Bogani, A. Vindigni, R. Sessoli, and D. Gatteschi (2008). J. Mater. Chem. 18, 4750–4758.CrossRefGoogle Scholar
  29. 29.
    Y. Zheng, G. Zhou, Z. Zheng, and R. E. P. Winpenny (2014). Chem. Soc. Rev. 43, 1462–1475.CrossRefGoogle Scholar
  30. 30.
    J. Goura, A. Chakraborty, J. P. S. Walsh, F. Tuna, and V. Chandrasekhar (2015). Cryst. Growth Des. 15, 3157–3165.CrossRefGoogle Scholar
  31. 31.
    S. K. Langley, N. F. Chilton, B. Moubaraki, and K. S. Murray (2013). Inorg. Chem. 52, 7183–7192.CrossRefGoogle Scholar
  32. 32.
    S. Y. Jhan, S. H. Huang, C. I. Yang, and H. L. Tsai (2013). Polyhedron 66, 222–227.CrossRefGoogle Scholar
  33. 33.
    L. Zou, L. Zhao, Y. Guo, G. Yu, Y. Guo, J. Tang, and Y. Li (2011). Chem. Commun. 47, 8659–8661.CrossRefGoogle Scholar
  34. 34.
    J. Peng, Q. Zhang, X. Kong, Y. Zheng, Y. Ren, L. Long, R. Huang, L. Zheng, and Z. Zheng (2012). J. Am. Chem. Soc. 134, 3314–3317.CrossRefGoogle Scholar
  35. 35.
    H. S. Ke, L. Zhao, Y. Guo, and J. Tang (2012). Dalton Trans. 41, 9760–9765.CrossRefGoogle Scholar
  36. 36.
    H. Ke, L. Zhao, Y. Guo, and J. Tang (2012). Dalton Trans. 41, 2314–2319.CrossRefGoogle Scholar
  37. 37.
    Q. Zhou, F. Yang, D. Liu, Y. Peng, G. Li, Z. Shi, and S. Feng (2013). Dalton Trans. 42, 1039–1046.CrossRefGoogle Scholar
  38. 38.
    H. B. Quan, L. B. Sheng, H. H. Zou, Z. Y. Liu, D. C. Liu, B. Li, M. S. Chen, and F. Liang (2018). J. Clust. Sci. 29, 75–81.CrossRefGoogle Scholar
  39. 39.
    Y. Jiang, R. J. Holmberg, F. Habib, L. Ungur, I. Korobkov, L. F. Chibotaru, and M. Murugesu (2016). RSC Adv. 6, 56668–56673.CrossRefGoogle Scholar
  40. 40.
    Z. R. Jhu, C. I. Yang, and G. H. Lee (2013). CrystEngComm. 15, 2456–2465.CrossRefGoogle Scholar
  41. 41.
    E. A. Boudreaux and J. N. Mulay Theory and Application of Molecular Diamagnetism (Wiley, New York, 1976), p. 35.Google Scholar
  42. 42.
    G. M. Sheldrick SHELXS-97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, 1997).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal UniversityGuilinPeople’s Republic of China
  2. 2.College of Chemistry and Pharmaceutical EngineeringNanyang Normal UniversityNanyangPeople’s Republic of China
  3. 3.Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and BioengineeringGuilin University of TechnologyGuilinPeople’s Republic of China

Personalised recommendations