Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1275–1283 | Cite as

Synthesis, Crystal Structure and Theoretical Calculations of Two Zn (II) Coordination Polymers Based on 2,5-Dihydroxyterephthalic Acid

  • Han-Yang Sun
  • Xue Li
  • Zi-Run Wang
  • Shi-qing Sun
  • Chuan-Bi Li
  • Jia-Jun Wang
Original Paper
  • 59 Downloads

Abstract

Two new coordination polymers, namely [Zn2(phen)2(DHTA)]·2H2O (1) and [Zn2(PHDI)2(DHTA)]·2H2O (2) (phen = 1,10-Phenanthroline, PHDI = 1,10-Phenanthroline-5,6- dione, DHTA = 2,5-dihydroxyterephthalic acid) have been synthesized under hydrothermal conditions. The structures have been determined by single crystal X-ray diffraction, thermal gravimetric analysis, infrared spectrum and luminescent properties. The X-ray diffraction analysis revealed the coordination modes of Zn(II) centers from complexes (1) and (2) are different. In (1), there are unusual five coordinated and six coordinated Zn(II) ions. In (2), the center is four coordinated Zn (II). Through these coordination modes of Zn centers and the π–π stacking interactions of organic ligands, the two complexes are all connected to three-dimensional supramolecular networks. The solid-state photoluminescence properties of (1) and (2) have been investigated. The emission peaks are located at 538 and 603 nm, the emissions may be attributed to the metal-to-ligand charge-transfer. The quantum-chemical calculations have been performed on ‘molecular fragments’ extracted from the crystal structure using the B3LYP method in Gaussian 09.

Keywords

Hydrothermal synthesis Crystal structure Coordination polymer Theoretical calculations Luminescent property 

Notes

Funding

This study was supported by Jilin province Science and Technology Development Plan item (No. 20140204080GX). This study was supported by Education Department of Jilin Province, China (No. JJKH20180777KJ) and the Science and Technology Development Projects of Siping City (No. 2017057).

Supplementary material

10876_2018_1444_MOESM1_ESM.docx (879 kb)
Supplementary material 1 (DOCX 879 kb)

References

  1. 1.
    S. R. Batten, S. M. Neville, and D. R. Turner (2010). Angew. Chem. 27, 4986–4987.Google Scholar
  2. 2.
    Y. X. Sun and W. Y. Sun (2015). CrystEngComm. 17, 4045–4063.CrossRefGoogle Scholar
  3. 3.
    J. L. C. Rowsell and O. M. Yaghi (2004). Microporous Mesoporous Mater. 73, 3.CrossRefGoogle Scholar
  4. 4.
    J. R. Long and O. M. Yaghi (2009). Chem. Soc. Rev. 38, 1213.CrossRefPubMedGoogle Scholar
  5. 5.
    S. R. Batten, N. R. Champness, X. M. Chen, et al. (2012). CrystEngComm. 9, 3001–3004.CrossRefGoogle Scholar
  6. 6.
    F. Song, C. Wang, J. M. Falkowski, et al. (2010). J. Am. Chem. Soc. 43, 15390–15398.CrossRefGoogle Scholar
  7. 7.
    Y. Z. Chen, C. M. Wang, Z. Y. Wu, Y. J. Xiong, Q. Xu, S. H. Yu, and H. L. Jiang (2015). Adv. Mater. 27, 5010–5016.CrossRefPubMedGoogle Scholar
  8. 8.
    Y. X. Chen, D. Ni, X. W. Yang, C. C. Liu, J. L. Yin, and K. F. Cai (2018). J. Alloys Comp. 737, 623–629.CrossRefGoogle Scholar
  9. 9.
    W. Y. Chen, L. J. Zhao, S. H. Yu, Z. F. Li, J. Y. Feng, and G. Li (2018). Polyhedron 148, 100–108.CrossRefGoogle Scholar
  10. 10.
    F. Luo, C. Yan, L. Dang, et al. (2016). J. Am. Chem. Soc. 17, 5678.CrossRefGoogle Scholar
  11. 11.
    L. Chen, J. W. Ye, H. P. Wang, M. Pan, S. Y. Yin, Z. W. Wei, L. Y. Zhang, K. Wu, Y. N. Fan, and C. Y. Su (2017). Nat. Commun. 8, 15985.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    B. Ma, Y. Fan, L. Wang, et al. (2018). Inorgan. Chim. Acta. 480, 166–172.CrossRefGoogle Scholar
  13. 13.
    Y. T. Yan, X. Y. Zhang, F. Zhang, et al. (2017). Dalton Trans. 5, 1682–1692.Google Scholar
  14. 14.
    X. F. Xue, Y. Q. Liu, Q. Liu, X. Y. Wang, W. Li, and J. H. Peng (2018). J. Cluster Sci. 29, 625–632.CrossRefGoogle Scholar
  15. 15.
    B. Xu, J. Xie, H. M. Hu, X. L. Yang, F. X. Dong, M. L. Yang, and G. L. Xue (2014). Cryst. Growth Des. 14, 1629–1641.CrossRefGoogle Scholar
  16. 16.
    X. Z. Liao, W. J. Sun, D. D. Zhai, X. L. Wang, J. M. Dong, and X. W. Yang (2016). Inorg. Chem. Commun. 73, 142–146.CrossRefGoogle Scholar
  17. 17.
    K. Xing, R. Fan, F. Wang, et al. (2018). ACS Appl. Mater. Interfaces. 26, 22746–22756.CrossRefGoogle Scholar
  18. 18.
    L. M. Fan, X. T. Zhang, D. C. Li, D. Sun, W. Zhang, and J. M. Dou (2013). CrystEngComm. 15, 349–355.CrossRefGoogle Scholar
  19. 19.
    Y. P. Bai, Y. G. Li, E. B. Wang, X. L. Wang, Y. Lu, and L. Xu (2005). J. Mol. Struct. 752, 54–59.CrossRefGoogle Scholar
  20. 20.
    A. L. Spek (2009). Acta Cryst. D. 65, 148–155.CrossRefGoogle Scholar
  21. 21.
    G. M. Sheldrick (2008). Acta Cryst. A 64, 112–122.CrossRefGoogle Scholar
  22. 22.
    G. B. Yang and Z. H. Sun (2013). Inorg. Chem. Commun. 29, 94–96.CrossRefGoogle Scholar
  23. 23.
    M. J. Krische and J. M. Lehn (2000). Struct. Bond. 96, 3–29.CrossRefGoogle Scholar
  24. 24.
    Z. B. Han, Y. K. He, C. H. Ge, J. Ribas, and L. Xu (2007). Dalton Trans. 28, 3020–3024.CrossRefGoogle Scholar
  25. 25.
    M. Ernzerhof and G. E. Scuseria (1999). J. Chem. Phys. 110, 5029–5036.CrossRefGoogle Scholar
  26. 26.
    G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009)Google Scholar
  27. 27.
    H. Wu, X. W. Dong, H. Y. Liu, J. F. Ma, S. L. Li, J. Yang, Y. Y. Liu, and Z. M. Su (2008). Dalton Trans. 39, 5331–5341.CrossRefGoogle Scholar
  28. 28.
    X. W. Dong, H. Wu, Y. Feng, C. H. Ma, X. Y. Wang, and Y. J. Li (2014). J. Mol. Struct. 1074, 516–521.CrossRefGoogle Scholar
  29. 29.
    K. D. Ley and K. S. Schanze (1998). Coord. Chem. Rev. 171, 287–307.CrossRefGoogle Scholar
  30. 30.
    V. W. W. Yam and K. K. W. Lo (1999). Chem. Soc. Rev. 28, 323–334.CrossRefGoogle Scholar
  31. 31.
    M. W. Perkovic (2000). Inorg. Chem. 39, 4962–4968.CrossRefPubMedGoogle Scholar
  32. 32.
    G. Z. Yuan, Y. P. Huo, X. L. Nie, H. Jiang, B. Liu, X. M. Fang, and F. H. Zhao (2013). Dalton Trans. 42, 2921–2929.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University) Ministry of EducationChangchunPeople’s Republic of China
  2. 2.Department of Arts and ScienceJilin Agricultural Science and Technology UniversityJilinPeople’s Republic of China

Personalised recommendations