Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1233–1241 | Cite as

Mechanism of Larvicidal Activity of Antimicrobial Silver Nanoparticles Synthesized Using Garcinia mangostana Bark Extract

  • Perumal Karthiga
  • Shanmugam Rajeshkumar
  • Gurusamy Annadurai
Original Paper
  • 83 Downloads

Abstract

In this present investigation, we used an inexpensive method for the synthesis of silver nanoparticles (AgNPs) using Garcinia mangostana bark. The phyto-assisted AgNPs further characterized using scanning electron microscope for morphology and the elemental composition was detected via energy dispersive X-ray analysis. The domain size was characterized with the help of X-ray diffraction and UV–Vis spectrophotometric analysis for surface plasmon resonance. The possible functional groups were identified with the help of Fourier transform infrared spectroscopy. Antibacterial properties of nanoparticles were evaluated against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Bacillus cereus and Klebsiella pneumoniae, using agar well diffusion method. Ultimately, the mosquitocidal activity of silver nanoparticles was assessed in the laboratory against fourth instar larvae of Aedes aegypti with LC50 of 5.93 mg L−1 which shows the potential larvicidal effect. To find out the mode of action for larvicidal activity, Agarose gel electrophoresis was carried out. We hypothesize that the toxicity of AgNPs against dengue vectors may be attributed to the small size of these AgNPs, which allows passage through the insect cuticle and into individual cells where they interfere with molting and other physiological processes.

Keywords

Aedes aegypti AgNPs Phyto-synthesis Bark Agarose gel electrophoresis 

References

  1. 1.
    G. R. Rudramurthy, M. K. Swamy, U. R. Sinniah, and A. Ghasemzadeh (2016). Molecules 21, 1.  https://doi.org/10.3390/molecules21070836.CrossRefGoogle Scholar
  2. 2.
    G. Benelli and H. Mehlhorn (2016). Parasitol. Res. 115, 1747.  https://doi.org/10.1007/s00436-016-4971-z.CrossRefPubMedGoogle Scholar
  3. 3.
    G. Benelli and J. Beier (2017). Acta. Trop. 174, 91.  https://doi.org/10.1016/j.actatropica.2017.06.028.CrossRefPubMedGoogle Scholar
  4. 4.
  5. 5.
    M. K. Das and M. A. Ansari (2003). J. Vect. Borne Dis. 40, 100.Google Scholar
  6. 6.
    G. Benelli, A. Lo Iacono, A. Canale, and H. Mehlhorn (2016). Parasitol. Res. 115, 2131.  https://doi.org/10.1007/s00436-016-5037-y.CrossRefPubMedGoogle Scholar
  7. 7.
    M. Govindarajan and G. Benelli (2016). RSC Adv. 6, 59021.  https://doi.org/10.1039/c6ra10228j.CrossRefGoogle Scholar
  8. 8.
    G. Benelli and H. Mehlhorn (2016). Parasitol. Res. 115, 1747.  https://doi.org/10.1007/s00436-016-4971-z.CrossRefPubMedGoogle Scholar
  9. 9.
    G. Benelli and D. Romano (2017). Entomol. Gen. 36, 309.  https://doi.org/10.1127/entomologia/2017/0496.CrossRefGoogle Scholar
  10. 10.
  11. 11.
    R. S. Lees, B. Knols, R. Bellini, M. Q. Benedict, A. Bheecarry, H. C. Bossin, et al. (2014). Acta. Trop. 132, S2.  https://doi.org/10.1016/j.actatropica.2013.11.005.CrossRefPubMedGoogle Scholar
  12. 12.
    A. S. Fauci and D. M. Morens (2016). N. Engl. J. Med. 374, 601.  https://doi.org/10.1056/NEJMp1600297.CrossRefPubMedGoogle Scholar
  13. 13.
    L. Yakob and T. Walker (2016). Lancet Glob. Health 4, 148.  https://doi.org/10.1016/S2214-109X(16)00048-6.CrossRefGoogle Scholar
  14. 14.
    G. Benelli and D. Romano (2017). Entomol. Gen. 36, 309.  https://doi.org/10.1127/entomologia/2017/0496.CrossRefGoogle Scholar
  15. 15.
    H. Khater, N. Hendawy, M. Govindarajan, K. Murugan, and G. Benelli (2016). Parasitol. Res. 115, 3747.CrossRefPubMedGoogle Scholar
  16. 16.
    R. Pavela (2016). Trends Plant Sci. 21, 1000.  https://doi.org/10.1016/j.tplants.2016.10.005.CrossRefPubMedGoogle Scholar
  17. 17.
    P. C. Stevenson, M. B. Isman, and S. R. Belmain (2017). Ind. Crops Prod. 110, 2.CrossRefGoogle Scholar
  18. 18.
    G. Benelli and R. Pavela (2018). Ind. Crops Prod. 117, 382.  https://doi.org/10.1016/j.indcrop.2018.02.072.CrossRefGoogle Scholar
  19. 19.
    A. B. B. Wilke and J. C. Beier (2018). Trends Parasitol..  https://doi.org/10.1016/j.pt.2018.02.003.CrossRefPubMedGoogle Scholar
  20. 20.
    U. Muthukumaran, M. Govindarajan, and M. Rajeswary (2015). Parasitol. Res. 114, 989.  https://doi.org/10.1007/s00436-014-4265-2.CrossRefPubMedGoogle Scholar
  21. 21.
    U. Muthukumaran, M. Govindarajan, and M. Rajeswary (2015). Parasitol. Res. 114, 1817.CrossRefPubMedGoogle Scholar
  22. 22.
    M. Govindarajan, M. Rajeswary, K. Veerakumar, U. Muthukumaran, S. L. Hoti, and G. Benelli (2016). Exp. Parasitol. 161, 40.  https://doi.org/10.1016/j.exppara.2015.12.011.CrossRefPubMedGoogle Scholar
  23. 23.
    M. Govindarajan, S. L. Hoti, and G. Benelli (2016). Enzym. Microb. Technol. 95, 155.  https://doi.org/10.1016/j.enzmictec.2016.05.005.CrossRefGoogle Scholar
  24. 24.
    M. Govindarajan, M. Rajeswary, U. Muthukumaran, S. L. Hoti, H. F. Khater, and G. Benelli (2016). J. Photochem. Photobiol. B 161, 482.  https://doi.org/10.1016/j.jphotobiol.2016.06.016.CrossRefPubMedGoogle Scholar
  25. 25.
    M. Govindarajan, M. Rajeswary, S. L. Hoti, K. Murugan, K. Kovendan, S. Arivoli, and G. Benelli (2016). J. Asia Pac. Entomol. 19, 51.  https://doi.org/10.1016/j.aspen.2015.11.009.CrossRefGoogle Scholar
  26. 26.
    M. Govindarajan, M. Rajeswary, K. Veerakumar, U. Muthukumaran, S. L. Hoti, H. Mehlhorn, D. R. Barnard, and G. Benelli (2016). Parasitol. Res. 115, 723.  https://doi.org/10.1007/s00436-015-4794-3.CrossRefPubMedGoogle Scholar
  27. 27.
    M. Govindarajan, M. Nicoletti, and G. Benelli (2016). J. Clust. Sci. 27, 745.  https://doi.org/10.1007/s10876-016-0977-z.CrossRefGoogle Scholar
  28. 28.
  29. 29.
    K. Murugan, J. S. Hwang, K. Kovendan, K. Prasanna Kumar, C. Vasugi, and A. Naresh Kumar (2011). Hydrobiologia 666, 331.CrossRefGoogle Scholar
  30. 30.
    G. Benelli (2015). Parasitol. Res. 114, 2801.  https://doi.org/10.1007/s00436-015-4586-9.CrossRefPubMedGoogle Scholar
  31. 31.
    G. Benelli (2015). Parasitol. Res. 114, 3201.CrossRefPubMedGoogle Scholar
  32. 32.
    M. R. Bindhu and M. Umadevi (2015). Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 135, 373.  https://doi.org/10.1016/j.saa.2014.07.045.CrossRefGoogle Scholar
  33. 33.
    G. Benelli (2016). Parasitol. Res. 115, 23.  https://doi.org/10.1007/s00436-015-4800-9.CrossRefPubMedGoogle Scholar
  34. 34.
    G. Benelli (2016). Enzym. Microb. Technol. 95, 58.CrossRefGoogle Scholar
  35. 35.
    G. Benelli and M. Govindarajan (2016). J. Clust. Sci..  https://doi.org/10.1007/s10876-016-1088-6.CrossRefGoogle Scholar
  36. 36.
    World Health Organization, WHO/CDS/WHOPES/GCDPP/3 (WHO, Geneva, 2005).Google Scholar
  37. 37.
    K. Alaqad and T. A. Saleh (2016). J. Environ. Anal. Toxicol. 6, 384.  https://doi.org/10.4172/2161-0525.1000384.CrossRefGoogle Scholar
  38. 38.
    C. Perez, et al. (1990). Acta. Biol. Med. Exp. 15, 113.Google Scholar
  39. 39.
    R. Veerasamy, et al. (2011). J. Saudi Chem. Soc. 15, 113.  https://doi.org/10.1016/j.jscs.2010.06.004.CrossRefGoogle Scholar
  40. 40.
    C. Malarkodi, S. Rajeshkumar, and G. Annadurai (2017). Food Control 80, 11.  https://doi.org/10.1016/j.foodcont.2017.04.023.CrossRefGoogle Scholar
  41. 41.
    P. S. Vankar, D. Shukla, and Á. C. Á. Silk (2011). Appl. Nanosci..  https://doi.org/10.1007/s13204-011-0051-y.CrossRefGoogle Scholar
  42. 42.
    M. Vanaja, S. Rajeshkumar, K. Paulkumar, G. Gnanajobitha, C. Malarkodi, and G. Annadurai (2013). Pelagia Res. Libr. 4, 50.Google Scholar
  43. 43.
    S. Rajeshkumar, C. Malarkodi, M. Vanaja, G. Gnanajobitha, K. Paulkumar, C. Kannan, and G. Annadurai (2013). Der Pharma Chem. 5, 224.Google Scholar
  44. 44.
    S. Mohana, G. Madhumitha, A. A. Rahuman, C. Kamaraj, A. Bharathi, and T. V. Surendra (2013). Ind. Crop. Prod. 43, 631.  https://doi.org/10.1016/j.indcrop.2012.08.013.CrossRefGoogle Scholar
  45. 45.
    C. Krishnaraj, E. G. Jagan, S. Rajasekar, P. Selvakumar, P. T. Kalaichelvan, and N. Mohan (2009). Colloids Surf. B Biointerfaces.  https://doi.org/10.1016/j.colsurfb.2009.10.008.CrossRefPubMedGoogle Scholar
  46. 46.
    J. Y. Song and B. S. Kim (2009). Bioprocess Biosyst. Eng. 32, 79.  https://doi.org/10.1007/s00449-008-0224-6.CrossRefPubMedGoogle Scholar
  47. 47.
    V. Q. Nguyen, M. Ishihara, Y. Mori, S. Nakamura, S. Kishimoto, H. Hattori, M. Fujita, Y. Kanatani, T. Ono, Y. Miyahira, and T. Matsui (2013). J. Nanomater. 2013, 1.  https://doi.org/10.1155/2013/693486.CrossRefGoogle Scholar
  48. 48.
    W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ou-Yang, and Y. Ben (2010). Appl. Microbiol. Biotechnol. 85, 1115.  https://doi.org/10.1007/s00253-009-2159-5.CrossRefPubMedGoogle Scholar
  49. 49.
    D. Philip and C. Unni (2010). Phys. E Low Dimens. Syst. Nanostructures.  https://doi.org/10.1016/j.physe.2010.10.006.CrossRefGoogle Scholar
  50. 50.
    S. Rajesh, D. P. Raja, J. M. Rathi, K. Sahayaraj, L. Sesuvium, A. Nabikhan, K. Kandasamy, A. Raj, N. M. Alikunhi, R. R. R. Kannan, R. Arumugam, D. Ramya, K. Manivannan, P. Anantharaman, M. Gnanadesigan, M. Anand, S. Ravikumar, M. Maruthupandy, M. S. Ali, V. Vijayakumar, A. K. Kumaraguru, K. Govindaraju, V. Kiruthiga, V. G. Kumar, G. Singaravelu, K. Kandasamy, N. M. Alikunhi, H. M. El-rafie, M. H. El-rafie, and M. K. Zahan (2012). Carbohydr. Polym. 96, 1.  https://doi.org/10.1007/s13204-012-0125-5.CrossRefGoogle Scholar
  51. 51.
    E. K. Elumalai, T. N. V. K. V. Prasad, J. Hemachandran, and S. V. Therasa (2010). J. Pharm. Sci. Res. 2, 549.Google Scholar
  52. 52.
    P. Rao, M. S. Chandraprasad, L. Yn, J. Rao, P. Aishwarya, and S. Shetty (2014). Int. J. Multidiscip. Curr. Res. 2, 165.Google Scholar
  53. 53.
    G. Benelli (2016). Asian Pac. J. Trop. Biomed. 6, 353.  https://doi.org/10.1007/s00436-015-4800-9.CrossRefGoogle Scholar
  54. 54.
    M. K. Shukla, R. P. Singh, C. R. K. Reddy, and B. Jha (2012). Bioresour. Technol. 107, 295.  https://doi.org/10.1016/j.biortech.2011.11.092.CrossRefPubMedGoogle Scholar
  55. 55.
    K. Veerekumar, M. Govindarajan, and M. Rajeswary (2013). Parasitol. Res. 112, 4073.  https://doi.org/10.1007/s00436-013-3598-6.CrossRefGoogle Scholar
  56. 56.
    B. Himalayan, A. A. Rahuman, G. Gopalakrishnan, B. S. Ghouse, and S. Arumugam (2000). Fitoterapia 71, 553.CrossRefPubMedGoogle Scholar
  57. 57.
    B. Chandramohan, K. Murugan, C. Panneerselvam, P. Madhiyazhagan, R. Chandirasekar, D. Dinesh, P. Mahesh Kumar, K. Kovendan, U. Suresh, J. Subramaniam, R. Rajaganesh, T. Aziz, B. S. M. Alsalhi, S. Devanesan, M. Nicoletti, H. Wei, and G. Benelli (2015). Parasitol. Res. 115, 1015.  https://doi.org/10.1007/s00436-015-4829-9.CrossRefPubMedGoogle Scholar
  58. 58.
    G. Benelli (2018). Environ. Sci. Pollut. Res. 25, 12329.  https://doi.org/10.1007/s11356-018-1850-4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryManonmaniam Sundaranar UniversityTirunelveliIndia
  2. 2.Saveetha Dental College and HospitalsSIMATSChennaiIndia
  3. 3.Sriparamakalyani Centre for Environmental SciencesManonmaniam Sundaranar UniversityAlwarkurichiIndia

Personalised recommendations