Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1185–1191 | Cite as

Two New Tetra-Zr(IV)-Substituted Sandwich-Type Polyoxometalates Functionalized by Different Organic Amine Ligands

  • Zhi-Hui Ni
  • Zhong Zhang
  • Guo-Yu Yang
Original Paper
  • 98 Downloads

Abstract

By the hydrothermal technique, two new organic–inorganic hybrids, tetra-Zr-substituted sandwich-type germanotungstate clusters functionalized by different organic amines H10K4[Zr43-O)2(μ-OH)2(enMe)2(B-α-GeW10O37)2]·6DMF·18H2O (1) and H10K2Na2[Zr43-O)2(μ-OH)2(en)2(B-α-GeW10O37)2]·4 DMF·22H2O (2) (enMe = 1,2-diaminopropane, en = ethylenediamine, DMF = N,N-dimethylformamide) have been obtained, which have been characterized by single-crystal X-ray structure analysis, powder X-ray diffraction (PXRD), elemental analysis, FT-IR spectra and thermogravimetric analysis (TGA), respectively. The structure analysis reveals that 1 and 2 exhibit similar sandwich-type polyoxoanion built by two [Zr23-O)(μ-OH)(enMe)(B-α-GeW10O37)] or [Zr23-O)(μ-OH)(en)(B-α-GeW10O37)] clusters, showing the first germanotungstate clusters with Zr-containing 5-membered ring formed from the chelation coordination pattern of Zr4+ and organic amine. To compounds 1 and 2, the cluster units, [Zr43-O)2(μ-OH)2(enMe)2(B-α-GeW10O37)2] and [Zr43-O)2(μ-OH)2(en)2(B-α-GeW10O37)2], are linked by K+ cations to form 1-D chains, respectively.

Keywords

Polyoxometalate Zirconium cluster Hydrothermal synthesis Organic amine 

Notes

Acknowledgements

This work was supported by the NSFC (Nos. 21571016 and 91122028), the NSFC for Distinguished Young Scholars (No. 20725101).

Supplementary material

10876_2018_1436_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (DOC 1557 kb)

References

  1. 1.
    M. T. Pope and A. Müller (1991). Angew. Chem., Int. Ed. Engl 30, 34.CrossRefGoogle Scholar
  2. 2.
    B. S. Bassil, S. S. Mal, M. H. Dickman, U. Kortz, H. Oelrich, and L. Walder (2008). J. Am. Chem. Soc. 130, 6696.CrossRefPubMedGoogle Scholar
  3. 3.
    S. T. Zheng and G. Y. Yang (2012). Chem. Soc. Rev. 41, 7623.CrossRefPubMedGoogle Scholar
  4. 4.
    S. S. Wang and G. Y. Yang (2015). Chem. Rev. 115, 4893.CrossRefPubMedGoogle Scholar
  5. 5.
    D. Y. Du, L. K. Yan, Z. M. Su, S. L. Li, Y. Q. Lan, and E. B. Wang (2013). Coord. Chem. Rev. 257, 702.CrossRefGoogle Scholar
  6. 6.
    P. Jimenez-Lozano, A. Sole-Daura, G. Wipff, J. M. Poblet, A. Chaumont, and J. J. Carbo (2017). Inorg. Chem. 56, 4148.CrossRefPubMedGoogle Scholar
  7. 7.
    J. Berzerius (1826). Pogg. Ann. 6, 369.Google Scholar
  8. 8.
    X. Wang, F. Li, and Y. Chen (2005). Inorg. Chem. Commun. 8, 70.CrossRefGoogle Scholar
  9. 9.
    M. Yashima, T. Hirose, S. Katano, Y. Suzuki, M. Kakihara, and M. Yoshimura (1995). Phys. Rev. B. 51, 8018.CrossRefGoogle Scholar
  10. 10.
    R. G. Finke, B. Rapko, and T. J. R. Weakley (1989). Inorg. Chem. 28, 1573.CrossRefGoogle Scholar
  11. 11.
    L. L. Cai, Y. X. Li, C. J. Yu, H. M. Ji, Y. Liu, and S. X. Liu (2009). Inorg. Chim. Acta. 362, 2895.CrossRefGoogle Scholar
  12. 12.
    X. K. Fang and C. L. Hill (2007). Angew. Chem. Int. Ed. 46, 3877.CrossRefGoogle Scholar
  13. 13.
    H. Carabineiro, R. Villanneau, C. Xavier, P. Herson, F. Lemos, F. R. Ribeiro, A. Proust, and M. Che (2006). Inorg. Chem. 45, 1915.CrossRefPubMedGoogle Scholar
  14. 14.
    X. K. Fang, T. M. Anderson, Y. Hou, and C. L. Hill (2005). Chem. Commun. 40, 5044.CrossRefGoogle Scholar
  15. 15.
    X. K. Fang, T. M. Anderson, and C. L. Hill (2005). Angew. Chem. Int. Ed. 44, 3540.CrossRefGoogle Scholar
  16. 16.
    K. Y. Wei, T. Yang, S. J. Qin, Y. Ma, X. X. Li, and G. Y. Yang (2016). Chin. J. Struct. Chem. 35, 1461.Google Scholar
  17. 17.
    W. Zhang, S. X. Liu, C. D. Zhang, R. K. Tan, F. J. Ma, S. J. Li, and Y. Y. Zhang (2010). Eur. J. Inorg. Chem. 22, 3473.CrossRefGoogle Scholar
  18. 18.
    D. Li, H. Y. Han, Y. H. Wang, X. Wang, Y. G. Li, and E. B. Wang (2013). Eur. J. Inorg. Chem. 1926.Google Scholar
  19. 19.
    B. S. Bassil, M. H. Dickman, and U. Kortz (2006). Inorg. Chem. 45, 2394.CrossRefPubMedGoogle Scholar
  20. 20.
    Z. Zhang, Y. L. Wang, and G. Y. Yang (2017). Inorg. Chem. Chem. 85, 32.CrossRefGoogle Scholar
  21. 21.
    G. Al-Kadamany, S. S. Mal, B. Milev, B. G. Donoeva, R. Maksimovskaya, O. A-Kholdeeva, and U. Kortz (2010). Chem. Eur. J. 16, 11797.CrossRefPubMedGoogle Scholar
  22. 22.
    B. S. Bassil, S. S. Mal, M. H. Dickman, U. Kortz, H. Oelrich, and L. Walder (2008). J. Am. Chem. Soc. 130, 6696.CrossRefPubMedGoogle Scholar
  23. 23.
    L. Huang, S. S. Wang, J. W. Zhao, L. Cheng, and G. Y. Yang (2014). J. Am. Chem. Soc. 136, 7637.CrossRefPubMedGoogle Scholar
  24. 24.
    N. Haraguchi, Y. Okaue, T. Isobe, and Y. Matsuda (1994). Inorg. Chem. 33, 1015.CrossRefGoogle Scholar
  25. 25.
    M. S. Mercè, R. S. Winter, C. Lydon, J. M. Cameron, D. L. Long, and L. Cronin (2016). Chem. Commun. 52, 919.CrossRefGoogle Scholar
  26. 26.
    L. H. Bi, U. Kortz, S. Nellutla, A. C. Stowe, J. Tol, N. S. Dalal, B. Keita, and L. Nadjo (2005). Inorg. Chem. 44, 896.CrossRefPubMedGoogle Scholar
  27. 27.
    G. M. Sheldrick SHELXL97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, 1997).Google Scholar
  28. 28.
    A. L. Spek (2015). Acta Crystallogr., Sect. C.Struct. Chem. 71, 9.CrossRefGoogle Scholar
  29. 29.
    L. J. Xu, W. Z. Zhou, L. Y. Zhang, B. Li, H. Y. Zang, Y. H. Wang, and Y. G. Li (2015). CrystEngComm. 17, 3708.CrossRefGoogle Scholar
  30. 30.
    X. B. Han, C. Qin, X. L. Wang, Y. Z. Tan, X. J. Zhao, and E. B. Wang (2017). Appl. Catal. B: Environ. 211, 349.CrossRefGoogle Scholar
  31. 31.
    I. D. Brown and D. Altermatt (1985). Acta Crystallogr. B 41, 244.CrossRefGoogle Scholar
  32. 32.
    J. C. Liu, J. Luo, Q. Han, J. Cao, L. J. Chen, Y. Song, and J. W. Zhao (2017). J. Mater. Chem. C. 5, 2043.CrossRefGoogle Scholar
  33. 33.
    Z. H. Ni, Z. H. Wang, L. Sun, B. J. Li, and Y. B. Zhao (2014). Mater. Sci. Eng. C Mater. Biol. Appl. 41, 249.CrossRefPubMedGoogle Scholar
  34. 34.
    A. P. Ginsberg (1990). Inorg. Synth. 1, 100.Google Scholar
  35. 35.
    F. Ran, L. Miao, S. Tanemura, M. Tanemura, Y. G. Cao, S. Tanaka, and N. Shibata (2008). Mater. Sci. Eng. B. 148, 35.CrossRefGoogle Scholar
  36. 36.
    Q. Wei, L. Sun, J. Zhang, and G. Y. Yang (2017). Dalton Trans. 46, 7911.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations