Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1227–1232 | Cite as

Synthesis and Electrocatalytic Material Application of a New Keggin-Type Phosphomolybdate Based Hybrid Compound Containing Quadruple Helical Chains

  • Fei Xie
  • Jing Ren
  • Wei Liu
  • Teng Wang
  • Jingwen Yuan
  • Xusheng Jiang
  • Haifeng Zhang
Original Paper
  • 22 Downloads

Abstract

A new and stable Keggin-type phosphomolybdate based hybrid compound, [Ag4(FKZ)2][HPMo12O40] (HFKZ = [1-(2,4-difluorophenyl)-1,1-bis [(1H-1,2,4-triazol-1-yl)-methyl]methanol], was synthesized and structurally characterized. The flexible coordination mode of HFKZ molecules and Ag ions generate high-connected PMo12 polyanions, as well as synergistically contribute to the formation of quadruple meso-helical structure. The new compound exhibits excellent stability in aqueous solution and different organic solvents and even high pressure, which is expected as an ideal electrocatalytic material due to the multi-electron redox ability of PMo12 polyanions and synergistic effect of all components. The result of the electrochemical behavior indicates that the new compound as active substance exhibits good electrocatalytic activity toward the reduction of nitrite.

Keywords

Polyoxometalate Fluconazol Helix Carbon paste electrode Electrocatalysis 

Notes

Acknowledgements

Financial support from by the National Natural Science Foundation of China (No. 21771061) and the Talent Culturing Plan for Leading Disciplines of University of Shandong Province.

Supplementary material

10876_2018_1435_MOESM1_ESM.docx (17.5 mb)
Supplementary material 1 (DOCX 17937 kb)

References

  1. 1.
    C. Piguet and G. Bernardinelli (1997). Chem. Rev. 97, 2005.CrossRefPubMedGoogle Scholar
  2. 2.
    C. Piguet, M. Borkovec, J. Hamacek, and K. Zeckert (2005). Coord. Chem. Rev. 249, 705.CrossRefGoogle Scholar
  3. 3.
    B. Moulton and M. J. Zaworotko (2001). Chem. Rev. 101, 1629.CrossRefPubMedGoogle Scholar
  4. 4.
    Z. Shi, S. H. Feng, S. Gao, E. Zhang, K. Yashima, H. Maeda, Y. Furusho Iida, and K. Nagai (2009). Chem. Rev. 109, 6102.CrossRefGoogle Scholar
  5. 5.
    X. L. Wang, C. Qin, E. B. Wang, L. Xu, Z. M. Su, and C. W. Hu (2004). Angew. Chem. Int. Ed. 43, 5036.CrossRefGoogle Scholar
  6. 6.
    D. F. Sun, R. Cao, Y. Q. Sun, W. H. Bi, X. Li, M. C. Hong, and Y. J. Zhao (2003). Eur. J. Inorg. Chem. 38, 8.Google Scholar
  7. 7.
    L. Han, M. C. Hong, R. H. Wang, J. H. Luo, Z. Z. Lin, and D. Q. Yuan (2003). Chem. Commun. 52, 2580.CrossRefGoogle Scholar
  8. 8.
    V. Berl, I. Huc, R. G. Khoury, M. J. Krische, and J. M. Lehn (2000). Nature 407, 720.CrossRefPubMedGoogle Scholar
  9. 9.
    X. H. Bu, M. L. Tong, H. C. Chang, S. Kitagawa, and S. R. Batten (2004). Angew. Chem. Int. Ed. 43, 192.CrossRefGoogle Scholar
  10. 10.
    S. J. Langford and C. P. Woodward (2007). CrystEngComm 9, 218.CrossRefGoogle Scholar
  11. 11.
    M. T. Pope Heteropoly and Isopoly Oxometalates (Springer, New York, 1983).CrossRefGoogle Scholar
  12. 12.
    H. Y. An, E. B. Wang, D. R. Xiao, Y. G. Li, Z. M. Su, and L. Xu (2006). Angew. Chem. Int. Ed. 45, 904.CrossRefGoogle Scholar
  13. 13.
    D. Y. Du, J. S. Qin, S. L. Li, Z. M. Su, and Y. Q. Lan (2014). Chem. Soc. Rev. 43, 461.CrossRefGoogle Scholar
  14. 14.
    X. X. Li, F. C. Shen, J. Liu, S. L. Li, L. Z. Dong, Q. Fu, Z. M. Su, and Y. Q. Lan (2017). Chem. Commun. 53, 10054.CrossRefGoogle Scholar
  15. 15.
    X. Y. Yang, T. Wei, J. S. Li, N. Sheng, P. P. Zhu, J. Q. Sha, and Y. Q. Lan (2017). Inorg. Chem. 56, 8311.CrossRefPubMedGoogle Scholar
  16. 16.
    B. W. Cong, Z. H. Su, Z. F. Zhao, B. Y. Yu, W. Q. Zhao, L. Xia, X. J. Ma, and B. B. Zhou (2017). CrystEngComm 19, 2739.CrossRefGoogle Scholar
  17. 17.
    S. Li, L. Zhang, Y. Q. Lan, K. P. O’Halloran, H. J. Ma, and H. Pang (2018). Chem. Commun. 54, 1964.CrossRefGoogle Scholar
  18. 18.
    Z. G. Han, Y. P. Liu, X. F. Zhao, J. S. Yan, and X. L. Zhai (2015). CrystEngComm 17, 7339.CrossRefGoogle Scholar
  19. 19.
    H. Wu, R. Wan, N. Si, P. Ma, J. Wang, and J. Niu (2018). Dalton Trans. 2018, (47), 1958.CrossRefGoogle Scholar
  20. 20.
    H. Fu, Y. Li, Y. Lu, W. Chen, Q. Wu, J. Meng, X. L. Wang, Z. M. Zhang, and E. Wang (2011). Cryst. Growth Des. 11, 458.CrossRefGoogle Scholar
  21. 21.
    M. Li, L. Cong, J. Zhao, T. Zheng, R. Tian, J. Sha, Z. Su, and X. Wang (2017). J. Mater. Chem. 5, 3371.CrossRefGoogle Scholar
  22. 22.
    M. T. Li, X. Y. Yang, J. S. Li, N. Sheng, G. D. Liu, J. Q. Sha, and Y. Q. Lan (2018). Inorg. Chem. 57, 3865.CrossRefPubMedGoogle Scholar
  23. 23.
    M. J. Zhou, D. W. Yan, Y. Y. Dong, X. X. He, and Y. Xu (2017). Inorg. Chem. 56, 9036.CrossRefPubMedGoogle Scholar
  24. 24.
    C. Qin, X. L. Wang, L. Yuan, and E. B. Wang (2008). Cryst. Growth Des. 8, 2093.CrossRefGoogle Scholar
  25. 25.
    X. Xi, G. Wang, B. Liu, and S. Dong (1995). Electrochim. Acta 40, 1025.CrossRefGoogle Scholar
  26. 26.
    M. Sadakane and E. Steckhan (1998). Chem. Rev. 98, 219.CrossRefPubMedGoogle Scholar
  27. 27.
    P. Wang, X. Wang, and G. Zhu (2000). Electrochim. Acta 46, 637.CrossRefGoogle Scholar
  28. 28.
    Z. Han, Y. Zhao, J. Peng, Q. Liu, and E. Wang (2005). Electrochim. Acta 51, 218–224.CrossRefGoogle Scholar
  29. 29.
    X. Wang, J. Sun, H. Lin, Z. Chang, X. Wang, and G. Liu (2016). Dalton Trans. 45, 12465–12478.CrossRefPubMedGoogle Scholar
  30. 30.
    A. Tian, Y. Tian, Y. Ning, X. Hou, H. Ni, X. Ji, G. C. Liu, and J. Ying (2016). Dalton Trans. 45, 13925.CrossRefPubMedGoogle Scholar
  31. 31.
    M. T. Li, X. Y. Yang, J. S. Li, N. Sheng, G. D. Liu, J. Q. Sha, and Y. Q. Lan (2018). Inorg. Chem. 57, 3865.CrossRefPubMedGoogle Scholar
  32. 32.
    L. S. Cavalcante, M. A. P. Almeida, W. Avansi Jr., R. L. Tranquilin, E. Longo, N. C. Batista, V. R. Mastelaro, and M. S. Li (2012). Inorg. Chem. 51, 10675.CrossRefPubMedGoogle Scholar
  33. 33.
    G. M. Sheldrick SHELXL-97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, 1997).Google Scholar
  34. 34.
    I. D. Brown (2009). Chem. Rev. 109, 6858.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fei Xie
    • 1
  • Jing Ren
    • 2
  • Wei Liu
    • 1
  • Teng Wang
    • 2
  • Jingwen Yuan
    • 2
  • Xusheng Jiang
    • 1
  • Haifeng Zhang
    • 2
  1. 1.Experimental Teaching and Equipment Management CenterQufu Normal UniversityQufuPeople’s Republic of China
  2. 2.Laboratory of Functional Materials in Universities of Shandong, Department of Chemistry and Chemical EngineeringJining UniversityQufuPeople’s Republic of China

Personalised recommendations