Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1169–1175 | Cite as

Synthesize of Silver Nanoparticles by Arc Discharge Method Using Two Different Rotational Electrode Shapes

  • Ahmed M. El-Khatib
  • Mohamed S. Badawi
  • Z. F. Ghatass
  • M. M. Mohamed
  • Mostafa Elkhatib
Original Paper

Abstract

Arc discharge technique was modified by using non-traditional rotational electrode and AC applied voltage. Two different systems were designed and locally fabricated to improve the properties of prepared yields. The rotational speed of the target, shape of the electrode and type of dielectric medium have a great effect on the yield, shape, size, stability and mass production. Ethanol as a dielectric medium was used in this study and compared with published works. The yields were characterized by Particle Size Analyzer, high-resolution electron microscope (HRTEM), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray diffraction (XRD), the ultraviolet–visible spectrophotometer (UV–Vis) and Zeta potential. All characterizations show that spherical silver nanoparticles are successfully produced for both systems. The results showed that the size of the nanoparticles prepared by cylindrical rotating electrode system is (23.45 ± 0.16) compared with those produced by disk rotating electrode system with size (26.83 ± 0.44). According to the obtained data the shape of the used cathodes was greatly affected the mass production rate of the nanoparticles, it was found that the rate in case of the cylindrical cathode was (46 ± 0.6 mg/min) compared with those prepared in case of disk cathode (34 ± 0.9 mg/min) and both rotational electrodes yielded more than simple arc discharge (23 ± 0.8 mg/min).

Keywords

Arc discharge Rotating electrode Silver nanoparticles Silver nanoparticles Electrode geometry 

Notes

Acknowledgements

The authors wish to thank Physics Department, Faculty of Science, Alexandria University for providing instrumental and laboratory facilities to carry out this work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    F. Nasirpouri (2017). Springer Ser. Surface Sci. 62,  https://doi.org/10.1007/978-3-319-44920-3_1.Google Scholar
  2. 2.
    J. E. Morris (ed.), Nanopackaging: Nanotechnologies and Electronics Packaging (© Springer Science + Business Media, LLC, 2008).  https://doi.org/10.1007/978-0-387-47326-0_6.
  3. 3.
    K. H. Tseng, M. Y. Chung, and J. L. Chiu (2018). J. Clust. Sci. 29, 215.  https://doi.org/10.1007/s10876-017-1325-7.CrossRefGoogle Scholar
  4. 4.
    A. M. El-Khatib, M. M. Mohamed, M. S. Badawi, A. S. Doma, A. S. Mohamed, and A. A. Thabet (2018). Int. J. Adv. Res.  https://doi.org/10.21474/ijar01/6819.CrossRefGoogle Scholar
  5. 5.
    Y. Y. Tsai, J. S. Su, and C. Y. Su (2008). Int. J. Mach. Tools Manuf. 48, 1653–1657.  https://doi.org/10.1016/j.ijmachtools.2008.07.005.CrossRefGoogle Scholar
  6. 6.
    N. Arora and N. N. Sharma (2014). Diamond Related Mater. 50, 135–150.  https://doi.org/10.1016/j.diamond.2014.10.001.CrossRefGoogle Scholar
  7. 7.
    A. J. Fetterman, Y. Raitses, and M. Keidar (2008). Carbon N. Y. 46, 1322–1326.  https://doi.org/10.1016/j.carbon.2008.05.018.CrossRefGoogle Scholar
  8. 8.
    T. Zhao, Y. Liu, and J. Zhu (2005). Carbon N. Y. 43, 2907–2912.  https://doi.org/10.1016/j.carbon.2005.06.005.CrossRefGoogle Scholar
  9. 9.
    M. I. Mohammad, A. A. Moosa, J. H. Potgieter, and M. K. Ismael (2013). ISRN Nanomater.  https://doi.org/10.1155/2013/785160.CrossRefGoogle Scholar
  10. 10.
    L. Zhen-Hua,W. Miao,W. Xin-Qing, Z. Hai-Bin, L. Huan-Ming, Y. Ando (2002). Chin. Phys. Lett. 19, 91–93. http://cpl.iphy.ac.cn/Y2002/V19/I1/091.
  11. 11.
    N. R. Haghighi and R. Poursalehi (2015). Procedia, Mater. Sci. 11, 347–351.  https://doi.org/10.1016/j.mspro.2015.11.119.CrossRefGoogle Scholar
  12. 12.
    K. H. Tseng, Y. C. Chen, and J. J. Shyue (2011). J. Nanopart Res. 13, 1865.  https://doi.org/10.1007/s11051-010-9937-y.CrossRefGoogle Scholar
  13. 13.
    T. Charinpanitkul, W. Tanthapanichakoon, and N. Sano (2009). Curr. Appl. Phys. 9, 629.  https://doi.org/10.1016/j.cap.2008.05.018.CrossRefGoogle Scholar
  14. 14.
    Y. Su, Y. Zhang, H. Wei, B. Qian, Z. Yang, and Y. Zhang (2012). Phys. E Low-dimensional Syst. Nanostruct. 44, 1548.  https://doi.org/10.1016/j.physe.2012.03.025.CrossRefGoogle Scholar
  15. 15.
    A. M. El-Khatib, Z. F. Ghatass, M. S. Badawi, M. El-Khatib, M. M. Mohamed (2018). Int. J. Sci. Eng. Res. 9.Google Scholar
  16. 16.
    B. D. Hall, D. Zanchet, and D. Ugarte (2000). J. Appl. Crystallogr. 33, 1335–1341.  https://doi.org/10.1107/s0021889800010888.CrossRefGoogle Scholar
  17. 17.
    X. Pan, I. Medina-Ramirez, R. Mernaugh, and J. Liu (2010). Coll. Surf. B: Biointerfaces 77, 82.  https://doi.org/10.1016/j.colsurfb.2010.01.010.CrossRefGoogle Scholar
  18. 18.
    S. Bhattacharjee (2016). J. Controll. Release 235, 337–351.  https://doi.org/10.1016/j.jconrel.2016.06.017.CrossRefGoogle Scholar
  19. 19.
    D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, and D. G. Fernig (2014).  https://doi.org/10.1039/c4an00978a.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    S. Ratan, D. Gautam, and Ramendhu (2010). J. Exp. Nanosci.  https://doi.org/10.1080/17458080903583915.CrossRefGoogle Scholar
  21. 21.
    J. D. J. Ingle and S. R. Crouch Spectrochemical Analysis (Prentice Hall, New Jersey, 1988).Google Scholar
  22. 22.
    Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow, and S. Iijima (2001). Diamond Relat. Mater. 10, 1185–1189.  https://doi.org/10.1016/S0925-9635(00)00513-6.CrossRefGoogle Scholar
  23. 23.
    X. Cai, H. Cong, and C. Liu (2012). Carbon N. Y. 50, 2726–2730.  https://doi.org/10.1016/j.carbon.2012.02.031.CrossRefGoogle Scholar
  24. 24.
    G. Raniszewski, L. Szymanski, Z. Kolacinski (2012) Carbon nanotubes synthesis by electric arc plasma with external magnetic field, 4th International Conference Nanocon, pp. 131–137.Google Scholar
  25. 25.
    H. Zhang, G. Zou, and L. Liu (2017). J. Mater. Sci. 52, 3375.  https://doi.org/10.1007/s10853-016-0626-9.CrossRefGoogle Scholar
  26. 26.
    M. Miranzadeh and M. Kassaee (2014). Chem. Eng. J. 257, 105–111.  https://doi.org/10.1016/j.cej.2014.06.088.CrossRefGoogle Scholar
  27. 27.
    H. Zhang, G. Zou, L. Liu, Y. Li, H. Tong, Z. Sun, and Y. N. Zhou (2016). Appl. Phys. A 122, 896.  https://doi.org/10.1007/s00339-016-0424-x.CrossRefGoogle Scholar
  28. 28.
    D.-C. Tien, L.-C. Chen, N. Van Thai, and S. Ashraf (2010). J. Nanomater.  https://doi.org/10.1155/2010/634757.CrossRefGoogle Scholar
  29. 29.
    K.-H. Tseng, C.-J. Chou, T.-C. Liu, D.-C. Tien, T.-C. Wu, and L. Stobinski (2018). Adv. Sci. Eng. Mater.  https://doi.org/10.1155/2018/3240959.CrossRefGoogle Scholar
  30. 30.
    B. C. Sih and Michael (2006). J. Phys. Chem. B.  https://doi.org/10.1021/jp065213a.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ahmed M. El-Khatib
    • 1
  • Mohamed S. Badawi
    • 1
    • 2
  • Z. F. Ghatass
    • 3
  • M. M. Mohamed
    • 4
  • Mostafa Elkhatib
    • 5
  1. 1.Physics Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.Department of Physics, Faculty of ScienceBeirut Arab UniversityBeirutLebanon
  3. 3.Institute of Graduate Studies and Research, Alexandria UniversityAlexandriaEgypt
  4. 4.Medical Research Institute, Alexandria UniversityAlexandriaEgypt
  5. 5.Basic Sciences Department, Faculty of EngineeringPharos UniversityAlexandriaEgypt

Personalised recommendations