Functionalization of Ag Nanoparticles by Glutamic Acid and Conjugation of Ag@Glu by Thiosemicarbazide Enhances the Apoptosis of Human Breast Cancer MCF-7 Cells

  • Seyed Ataollah Sadat Shandiz
  • Ahmad Montazeri
  • Mansoreh Abdolhosseini
  • Somayeh Hadad Shahrestani
  • Mohammad Hedayati
  • Zeinab Moradi-Shoeili
  • Ali Salehzadeh
Original Paper


In this study, we developed a novel thiosemicarbazide (TSC) conjugated with Ag nanoparticles functionalized by glutamic acid (Ag@Glu) for anticancer activities against human breast cancer MCF-7 cells. The Ag@Glu/TSC nanoparticles were characterized by UV–Vis diffuse reflectance spectroscopy, Fourier transform infrared (FTIR) spectroscopy, SEM, TEM, and XRD analyses. FTIR spectrum showed that the TSC was anchored on the Ag@Glu nanoparticles. The TEM and SEM images of the sample revealed that the Ag@Glu/TSC varied in morphology with a mean size of ~ 50 nm. In vitro cytotoxicity effect of Ag@Glu/TSC was performed using MTT assay toward human breast cancer MCF-7 cells. Moreover, Ag@Glu/TSC induced-apoptosis was evaluated using Hoechst 33258 staining, Caspase-3 activation assay, and annexin V/PI staining with flow cytometry analysis. The MTT assay result of Ag@Glu/TSC showed that the cell viability was in a dose-dependent manner (IC50 = 299.17 μg/mL). We found that Ag@Glu/TSC induce the apoptosis of MCF-7 cell through an increase in Caspase-3 and nuclear fragmentation. Furthermore, the percentage of early and late apoptotic cancer cells was increased as compared to untreated cells using annexin V/PI staining. Finally, we found that the novel Ag@Glu/TSC nanoparticles could inhibit the proliferation of MCF-7 cells by triggering apoptosis pathway, suggesting a new approach to treat breast cancer.


Caspase-3 Cytotoxicity Flow cytometry Nanoparticle 


Compliance with Ethical Standards

Conflict of interest

All of the authors have declared that no competing interests exist.


  1. 1.
    J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D. M. Parkin, D. Forman, and F. Bray (2015). Int. J. Cancer 136, 359.CrossRefGoogle Scholar
  2. 2.
    J. Lee, D. K. Chatterjee, M. H. Lee, and S. Krishnan (2014). Cancer Lett. 347, 46.CrossRefGoogle Scholar
  3. 3.
    M. Fakruddin, Z. Hossain, and H. Afroz (2012). J. Nanobiotechnol. 10, 31.CrossRefGoogle Scholar
  4. 4.
    R. G. Saratale, H. S. Shin, G. Kumar, G. Benelli, D. S. Kim, and G. D. Saratale (2015). Artif. Cells Nanomed. Biotechnol. 46, 211.CrossRefGoogle Scholar
  5. 5.
    K. Murugan, D. Dinesh, K. Kavithaa, M. Paulpandi, T. Ponraj, M. S. Alsalhi, S. Devanesan, J. Subramaniam, R. Rajaganesh, H. Wei, S. Kumar, M. Nicoletti, and G. Benelli (2016). Parasitol. Res. 115, (3), 1085.CrossRefGoogle Scholar
  6. 6.
    M. Z. Ahmad, S. Akhter, G. K. Jain, M. Rahman, S. A. Pathan, F. J. Ahmad, and R. K. Khar (2010). Expert. Opin. Drug Deliv. 7, 42.CrossRefGoogle Scholar
  7. 7.
    G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1–2. Scholar
  8. 8.
    G. Benelli, F. Maggi, R. Petrelli, and M. Nicoletti (2017). J. Clust. Sci. 28, (1), 3–10.CrossRefGoogle Scholar
  9. 9.
    P. Venkatachalam, T. Kayalvizhi, J. Udayabanu, G. Benelli, and N. Geetha (2017). J. Clust. Sci. 28, (1), 607.CrossRefGoogle Scholar
  10. 10.
    X. Zhao, Y. Xia, Q. Li, X. Ma, F. Quan, C. Geng, and Z. Han (2014). Colloids Surf. A Physicochem. Eng. Asp. 444, 180.CrossRefGoogle Scholar
  11. 11.
    R. K. Madhu, R. B. Lakshmeesha, S. Asha, B. Narayana, K. Byrappa, W. Youjiang, Y. Donggang, and Y. Sangappa (2015). Adv. Mater. Lett. 6, 1088.CrossRefGoogle Scholar
  12. 12.
    A. S. Kutsenko and V. M. Granchak (2009). Theor. Exp. Chem. 45, 313.CrossRefGoogle Scholar
  13. 13.
    G. Benelli (2016). Enzyme. Microb. Technol. 95, 58–68.CrossRefGoogle Scholar
  14. 14.
    V. Asgary, A. Shoari, F. Baghbani, S. A. Sadat Shandiz, M. S. Khosravi, A. Janani, R. Bigdeli, R. Bashar, and R. A. Cohan (2016). Int. J. Nanomed. 11, 3597.CrossRefGoogle Scholar
  15. 15.
    E. M. Bavin, R. J. W. Rees, J. M. Robson, M. Seiler, D. E. Seymour, and D. Suddaby (1950). J. Pharm. Pharmacol. 2, 72.CrossRefGoogle Scholar
  16. 16.
    R. A. Finch, M. C. Liu, A. H. Cory, J. G. Cory, and A. C. Sartorelli (1999). Adv. Enzyme Regul. 39, 3.CrossRefGoogle Scholar
  17. 17.
    H. Beraldo and D. Gambino (2004). Mini-Rev. Med. Chem. 4, 9.Google Scholar
  18. 18.
    J. L. Navarrete, V. Hernandez, and F. J. Ramirez (1995). J. Mol. Struct. 348, 249.CrossRefGoogle Scholar
  19. 19.
    L. Jin and Y. Wang (2017). Phys. Chem. Chem. Phys. 19, 12992.CrossRefGoogle Scholar
  20. 20.
    K. C. Barick, A. Sharma, N. G. Shetake, R. S. Ningthoujam, R. K. Vatsa, P. D. Babu, B. N. Pandey, and P. A. Hassan (2015). Dalton Trans. 44, 14686.CrossRefGoogle Scholar
  21. 21.
    B. He, N. Lu, and Z. Zhou (2009). Curr. Opin. Cell Biol. 21, 900.CrossRefGoogle Scholar
  22. 22.
    R. A. V. Bell and L. A. Megeney (2017). Cell Death Differ. 24, 1359.CrossRefGoogle Scholar
  23. 23.
    V. S. Eckle, A. Buchmann, W. Bursch, R. Schulte-Hermann, and M. Schwarz (2004). Toxicol. Pathol. 32, 9.CrossRefGoogle Scholar
  24. 24.
    P. Krishnan, M. Rajan, S. Kumari, S. Sakinash, S. P. Priya, F. Amira, L. Danjuma, et al. (2017). Sci. Rep. 7, (1), 10962.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Seyed Ataollah Sadat Shandiz
    • 1
  • Ahmad Montazeri
    • 2
  • Mansoreh Abdolhosseini
    • 3
  • Somayeh Hadad Shahrestani
    • 3
  • Mohammad Hedayati
    • 4
  • Zeinab Moradi-Shoeili
    • 5
  • Ali Salehzadeh
    • 3
  1. 1.Department of Biology, Central Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Young Researchers and Elite Club, Rasht BranchIslamic Azad UniversityRashtIran
  3. 3.Department of Biology, Rasht BranchIslamic Azad UniversityRashtIran
  4. 4.Department of Cell and Molecular BiologyUniversity of GuilanRashtIran
  5. 5.Department of Chemistry, Faculty of SciencesUniversity of GuilanRashtIran

Personalised recommendations