Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1003–1015 | Cite as

Synthesis of Metallic Silver Nanoparticles by Fluconazole Drug and Gamma Rays to Inhibit the Growth of Multidrug-Resistant Microbes

  • Ahmed I. El-Batal
  • Farag M. Mosallam
  • Gharieb S. El-Sayyad
Original Paper
  • 176 Downloads

Abstract

Here we tailored a methodology, including green synthesis of silver nanoparticles (AgNPs) in aqueous solution using Fluconazole (Fluc.), a broad-spectrum antifungal agent under the influence of gamma rays. AgNPs were characterized by UV–Vis., FTIR, XRD, DLS, and TEM image. Antimicrobial activities of AgNPs, Fluc., and Ag+ were investigated against multidrug-resistant (MDR) bacteria and unicellular fungi. From our results, AgNPs production was found to be dependent on the concentration of Ag+, Fluc. and gamma doses. DLS with TEM image explained the size and shape of AgNPs and were found to be spherical with diameter of 11.65 nm. FTIR analysis indicates that, the hydroxyl, nitrogen and fluoride moiety in Fluc. were responsible for the reduction and binding process. AgNPs possesses antimicrobial activity against all tested microbes more than Ag+. It produced high efficacy against Acinetobacter baumannii (20.0 mm ZOI). AgNPs are synergistically active towards Candida albicans (17.0 mm ZOI). Investigated action mechanisms for AgNPs activity had been discussed. Thereby, owing to its unique features as cost-effective with continued-term stabilization, it can discover potential targets in biomedical applications and infectious diseases control.

Keywords

Fluconazole Silver nanoparticles Gamma irradiation Synergism Antibacterial activity 

Notes

Acknowledgements

The authors would like to thank the Nanotechnology Research Unit (P. I. Prof. Dr. Ahmed I. El-Batal), Drug Microbiology Lab., Drug Radiation Research Department, NCRRT, Egypt, for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by using Nano/Biotechnological and Irradiation Processes”.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10876_2018_1411_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. 1.
    A. F. El-Baz, et al. (2016). J. Basic Microbiol. 56, 531–540.CrossRefPubMedGoogle Scholar
  2. 2.
    A. I. El-Batal, et al. (2017). J. Photochem. Photobiol. B 173, 120–139.CrossRefPubMedGoogle Scholar
  3. 3.
    G. Benelli (2017). J. Clust. Sci. 28, (1), 11–14.CrossRefGoogle Scholar
  4. 4.
    G. Benelli and M. Govindarajan (2017). J. Clust. Sci. 28, (1), 287–308.CrossRefGoogle Scholar
  5. 5.
    G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, (1), 1–2.CrossRefGoogle Scholar
  6. 6.
    S. Iravani, et al. (2014). Res. Pharm. Sci. 9, (6), 385.PubMedPubMedCentralGoogle Scholar
  7. 7.
    K. Gopinath, et al. (2017). J. Clust. Sci. 28, (3), 1541–1550.CrossRefGoogle Scholar
  8. 8.
    M. Govindarajan, M. Nicoletti, and G. Benelli (2016). J. Clust. Sci. 27, 745–761.CrossRefGoogle Scholar
  9. 9.
    J. M. Khaled, et al. (2017). J. Clust. Sci. 28, (5), 3009–3019.CrossRefGoogle Scholar
  10. 10.
    J. Li, et al. (2012). Micro Nano Lett. 7, (4), 360–362.CrossRefGoogle Scholar
  11. 11.
    A. El-Batal, et al. (2013). World Appl. Sci. J. 22, (1), 01–16.Google Scholar
  12. 12.
    A. I. El-Batal, et al. (2017). J. Clust. Sci. 28, (3), 1083–1112.CrossRefGoogle Scholar
  13. 13.
    A. I. El-Batal, et al. (2017). Int. J. Biol. Macromol. 107, 2298–2311.CrossRefPubMedGoogle Scholar
  14. 14.
    A. El-Batal, et al. (2013). J. Chem. Pharm. Res. 5, (8), 1–15.Google Scholar
  15. 15.
    M. A. El-Ghazaly, et al. (2016). Can. J. Physiol. Pharmacol. 95, (2), 101–110.CrossRefPubMedGoogle Scholar
  16. 16.
    M. Składanowski, et al. (2017). J. Clust. Sci. 28, (1), 59–79.CrossRefGoogle Scholar
  17. 17.
    R. R. Banala, V. B. Nagati, and P. R. Karnati (2015). Saudi J. Biol. Sci. 22, (5), 637–644.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    W. Schreiber, et al. (2003). Invest Ophthalmol Vis Sci 44, (6), 2634–2643.CrossRefPubMedGoogle Scholar
  19. 19.
    M. Ghorab and A. El-Batal (2002). Boll. Chim. Farm. 141, (2), 110–117.PubMedGoogle Scholar
  20. 20.
    A. I. El-Batal, et al. (2014). Br. J. Pharm. Res. 4, (11), 1341–1363.CrossRefGoogle Scholar
  21. 21.
    V. Karthika, et al. (2017). J. Photochem. Photobiol. B 167, 189–199.CrossRefPubMedGoogle Scholar
  22. 22.
    M. Howarth, et al. (2005). Proc. Natl. Acad. Sci. USA 102, (21), 7583–7588.CrossRefPubMedGoogle Scholar
  23. 23.
    A. I. El-Batal and Mona Tamie (2015). J. Chem. Pharm. Res. 7, 1020–1036.Google Scholar
  24. 24.
    A. I. El-Batal, et al. (2012). World Appl. Sci. J. 19, (7), 962–971.Google Scholar
  25. 25.
    R. Jagannathan, P. Poddar, and A. Prabhune (2007). J. Phys. Chem. C 111, (19), 6933–6938.CrossRefGoogle Scholar
  26. 26.
    A. Baraka, et al. (2017). Chem. Pap. 71, (11), 2271–2281.CrossRefGoogle Scholar
  27. 27.
    A. El-Batal, et al. (2016). J. Chem. Pharm. Res. 8, (4), 934–951.Google Scholar
  28. 28.
    A. I. El-Batal, et al. (2015). Biotechnol. Rep. 5, 31–39.CrossRefGoogle Scholar
  29. 29.
    M. Ghorab, et al. (2016). Br. Biotechnol. J. 16, (1), 1–25.CrossRefGoogle Scholar
  30. 30.
    A. El-Batal, et al. (2014). Br. J. Pharm. Res. 4, (21), 2525–2547.CrossRefGoogle Scholar
  31. 31.
    A. I. El-Batal, A.-A. M. Hashem, and N. M. Abdelbaky (2013). SpringerPlus 2, (1), 129.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    G. Funke, et al. (1998). J. Clin. Microbiol. 36, (7), 1948–1952.PubMedPubMedCentralGoogle Scholar
  33. 33.
    P. Venkatachalam, et al. (2017). J. Clust. Sci. 28, (1), 607–619.CrossRefGoogle Scholar
  34. 34.
    F.-K. Liu, et al. (2007). Mater. Lett. 61, (11), 2402–2405.CrossRefGoogle Scholar
  35. 35.
    S. Link and M. A. El-Sayed (2003). Annu. Rev. Phys. Chem. 54, (1), 331–366.CrossRefPubMedGoogle Scholar
  36. 36.
    A. I. El-Batal and M. S. Al Tamie (2016). Pharm. Lett. 8, (2), 315–333.Google Scholar
  37. 37.
    N. M. Abdelbaky, Cairo University Theses (2012).Google Scholar
  38. 38.
    S. Naveed and M. Nafees (2015). Open Access Libr. J. 2, (4), 1.Google Scholar
  39. 39.
    A. Hanora, et al. (2016). J. Chem. Pharm. Res. 8, (3), 405–423.Google Scholar
  40. 40.
    A. I. El-Batal, et al. (2016). Nanomater. Nanotechnol. 6, 13.CrossRefGoogle Scholar
  41. 41.
    P. Sadasivudu, N. Shastri, and M. Sadanandam (2009). Int. J. ChemTech Res. 1, (4), 1131–1136.Google Scholar
  42. 42.
    A. I. El-Batal, et al. (2018). Microbial Pathog. 118, 159–169.CrossRefGoogle Scholar
  43. 43.
    H. Bar, et al. (2009). Colloids Surf. A Physicochem. Eng. Asp. 339, (1), 134–139.CrossRefGoogle Scholar
  44. 44.
    H. Huang and X. Yang (2004). Carbohydr. Res. 339, (15), 2627–2631.CrossRefPubMedGoogle Scholar
  45. 45.
    K. G. Stamplecoskie and J. C. Scaiano (2010). J. Am. Chem. Soc. 132, (6), 1825–1827.CrossRefPubMedGoogle Scholar
  46. 46.
    S. Mohan, et al. (2014). Carbohydr. Polym. 106, 469–474.CrossRefPubMedGoogle Scholar
  47. 47.
    A. El-Batal, et al. (2014). Br. J. Pharm. Res. 4(21).Google Scholar
  48. 48.
    A. El-Batal, et al. (2012). Int. J. Pharm. Sci. Health Care 6, (2), 1–22.Google Scholar
  49. 49.
    A. Gannoruwa, B. Ariyasinghe, and J. Bandara (2016). Catal. Sci. Technol. 6, (2), 479–487.CrossRefGoogle Scholar
  50. 50.
    A. I. El-Batal, et al. (2016). Bioengineering 3, (2), 14.CrossRefPubMedCentralGoogle Scholar
  51. 51.
    L. Rastogi and J. Arunachalam (2011). Mater. Chem. Phys. 129, (1), 558–563.CrossRefGoogle Scholar
  52. 52.
    Z.-M. Xiu, et al. (2012). Nano Lett. 12, (8), 4271–4275.CrossRefPubMedGoogle Scholar
  53. 53.
    S. Prabhu and E. K. Poulose (2012). Int. Nano Lett. 2, (1), 32.CrossRefGoogle Scholar
  54. 54.
    P. Kanmani and J.-W. Rhim (2014). Carbohydr. Polym. 106, 190–199.CrossRefPubMedGoogle Scholar
  55. 55.
    B. Das, et al. (2017). Arabian J. Chem. 10, (6), 862–876.CrossRefGoogle Scholar
  56. 56.
    J. Saxena, et al. (2016). SpringerPlus 5, (1), 1–10.CrossRefGoogle Scholar
  57. 57.
    A. Muniyan, et al. (2017). World J. Microbiol. Biotechnol. 33, (7), 147.CrossRefPubMedGoogle Scholar
  58. 58.
    R. Thapa, et al. (2017). Ann. Clin. Microbiol. Antimicrob. 16, (1), 39.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    A. Banu and V. Rathod (2013). Int. J. Biomed. Nanosci. Nanotechnol. 3, (1–2), 211–220.CrossRefGoogle Scholar
  60. 60.
    M. Rai, et al. (2012). J. Appl. Microbiol. 112, (5), 841–852.CrossRefPubMedGoogle Scholar
  61. 61.
    S. Jana and T. Pal (2007). J. Nanosci. Nanotechnol. 7, (6), 2151–2156.CrossRefPubMedGoogle Scholar
  62. 62.
    H. Szmacinski, et al. (2008). Appl. Spectrosc. 62, (7), 733–738.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    R. Stiufiuc, et al. (2013). Nanoscale Res. Lett. 8, (1), 47.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    C. Malarkodi, et al. (2013). Adv. Nano Res. 1, (2), 83–91.CrossRefGoogle Scholar
  65. 65.
    A. Nalwade and A. Jadhav (2013). Arch. Appl. Sci. Res. 5, (3), 45–49.Google Scholar
  66. 66.
    S. Ghosh, et al. (2012). Int. J. Nanomed. 7, 483.Google Scholar
  67. 67.
    W. Schreurs and H. Rosenberg (1982). J Bacteriol. 152, (1), 7–13.PubMedPubMedCentralGoogle Scholar
  68. 68.
    C.-N. Lok, et al. (2006). J. Proteome Res. 5, (4), 916–924.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    S.-H. Kim, et al. (2011). Korean. J. Microbiol. Biotechnol. 39, (1), 77–85.Google Scholar
  70. 70.
    J. Li, et al. (2013). J. Nanosci. Nanotechnol. 13, (10), 6806–6813.CrossRefPubMedGoogle Scholar
  71. 71.
    J. R. Morones, et al. (2005). Nanotechnology 16, (10), 2346.CrossRefPubMedGoogle Scholar
  72. 72.
    W. K. Jung, et al. (2008). Appl. Environ. Microbiol. 74, (7), 2171–2178.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    U. Klueh, et al. (2000). J. Biomed. Mater. Res. A 53, (6), 621–631.CrossRefGoogle Scholar
  74. 74.
    Y.-H. Hsueh et al. (2015). PloS One 10(12).Google Scholar
  75. 75.
    D. Wu, et al. (2014). J. Endod. 40, (2), 285–290.CrossRefPubMedGoogle Scholar
  76. 76.
    C. Pellieux, et al. (2000). Methods Enzymol. 319, 197–207.CrossRefPubMedGoogle Scholar
  77. 77.
    P. K. Blecher and A. Friedman (2012). J. Drugs Dermatol. 11, (7), 846–851.Google Scholar
  78. 78.
    S. Belluco et al. (2016). Front. Microbiol. 7.Google Scholar
  79. 79.
    H. Xie, M. M. Mason, and J. P. Wise (2011). Rev. Environ. Health 26, (4), 251–268.CrossRefPubMedGoogle Scholar
  80. 80.
    J. Deutscher and M. H. Saier Jr. (2005). J. Mol. Microbiol. Biotechnol. 9, (3–4), 125–131.CrossRefPubMedGoogle Scholar
  81. 81.
    J. Kirstein and K. Turgay (2005). J. Mol. Microbiol. Biotechnol. 9, (3–4), 182–188.CrossRefPubMedGoogle Scholar
  82. 82.
    S. Shrivastava (2008). Dig. J. Nanomater. Bios. 3, 303–308.Google Scholar
  83. 83.
    J. Tian, et al. (2007). Chem. Med. Chem. 2, (1), 129–136.CrossRefPubMedGoogle Scholar
  84. 84.
    Z.-M. Xiu, J. Ma, and P. J. Alvarez (2011). Environ. Sci. Technol. 45, (20), 9003–9008.CrossRefPubMedGoogle Scholar
  85. 85.
    A. L. Koch (1986). J. Theor. Biol. 120, (1), 73–84.CrossRefPubMedGoogle Scholar
  86. 86.
    G. Fujii, et al. (1997). Biochemistry 36, (16), 4959–4968.CrossRefPubMedGoogle Scholar
  87. 87.
    K.-J. Kim, et al. (2009). Biometals 22, (2), 235–242.CrossRefPubMedGoogle Scholar
  88. 88.
    F. J. Alvarez-Peral, et al. (2002). Microbiology 148, (8), 2599–2606.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biotechnology Division, Drug Radiation Research Department, Drug Microbiology LaboratoryNational Center for Radiation Research and Technology (NCRRT), Atomic Energy AuthorityCairoEgypt

Personalised recommendations