Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 959–963 | Cite as

Investigation of a Simple Pickup Method for Doping Molecules into Water Clusters

  • Chuanfu Huang
Original Paper
  • 36 Downloads

Abstract

A capillary pickup method was investigated for doping molecules into water clusters, which were produced by supersonic expansion, and underwent a sticking collision with a crossed beam from the capillary. This method was applied to H2O clusters in a beam with pickup of DCl, CH3OH, NH3, CO2 and D2O molecules, however, we found only molecule of DCl can be picked up by water clusters with the capillary configuration in those tested dopants. Meanwhile, two different distances between the capillary to the nozzle were investigated based on the collected mass spectra, and we found that the smaller distance can obtain the stronger mixed cluster intensity.

Keywords

Water clusters Dopants Molecule pickup Capillary pickup method 

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities under Grant No. 2018QNB11, and the measurements were carried out at the Nanocluster Physics Laboratory at the University of Southern California.

Compliance with Ethical Standards

Conflict of interest

The author declares he/she has no conflict of interest.

References

  1. 1.
    H. R. Carlon (1979). Infrared Phys. 19, 549.CrossRefGoogle Scholar
  2. 2.
    H. R. Carlon (1984). J. Phys. D 17, 1221.CrossRefGoogle Scholar
  3. 3.
    C. E. Kolb, J. T. Jayne, D. R. Worsnop, M. J. Molina, R. F. Meads, and A. V. Viggiano (1994). J. Am. Chem. Soc. 116, 10314.CrossRefGoogle Scholar
  4. 4.
    P. Hobza and K. Müller-Dethlefs (2009). Non-Covalent Interactions: Theory and Experiment.  https://doi.org/10.1039/9781847559906.CrossRefGoogle Scholar
  5. 5.
    K. Müller-Dethlefs and P. Hobza (2000). Chem. Rev. 100, 143.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    E. R. Johnson, S. Keinan, P. Mori-Sańchez, J. Contreras-García, A. J. Cohen, and W. Yang (2010). J. Am. Chem. Soc. 132, 6498.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    K. S. Amit, W. Yimin, S. M. John, M. B. Joel, and R. Hanna (2016). Chem. Rev. 116, 9.Google Scholar
  8. 8.
    E. B. Daniel (2002). J. Phys. Chem. A 105, 46.Google Scholar
  9. 9.
    D. Bing, T. Hamashima, A. Fujii, and J. L. Kuo (2010). J. Phys. Chem. A 114, 31.Google Scholar
  10. 10.
    G. Matisz, A.-M. Kelterer, W. M. F. Fabian, and S. Kunsági-Máté (2015). Phys. Chem. Chem. Phys. 17, 8647.CrossRefGoogle Scholar
  11. 11.
    L. Michael, P. Andrii, L. John, R. H. Travis, O. Sandra, A. J. O. Richard, and R. Victor (2015). Int. J. Mass Spectrom 390, 15.Google Scholar
  12. 12.
    H. Preben, K. Theo, S. Kristian, J. R. Mauritz, B. N. Steen, and U. Einar (2010). J. Phys. Chem. A 114, 27.Google Scholar
  13. 13.
    K. Sattler (1985). Surf. Sci. 156, 292.CrossRefGoogle Scholar
  14. 14.
    T. P. Martin (1984). J. Chem. Phys. 80, 170.CrossRefGoogle Scholar
  15. 15.
    M. Kinne, T. M. Bernhardt, B. Kaiser, and K. Rademann (1997). Z. Phys. D 40, 105.Google Scholar
  16. 16.
    T. Habteyes, L. Velarde, and A. Sanov (2007). J. Chem. Phys. 126, 154301.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    K. Mizuse and A. Fujii (2011). Phys. Chem. Chem. Phys. 13, 7129.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    R. Moro, R. Rabinovitch, and V. V. Kresin (2005). Rev. Sci. Instrum. 76, 056104.CrossRefGoogle Scholar
  19. 19.
    L. Poth, Z. Shi, Q. Zhong, and A. W. Castleman Jr. (1996). Int. J. Mass Spectrom. Ion Processes 154, 35.CrossRefGoogle Scholar
  20. 20.
    D. Bing, T. Hamashima, A. Fujii, and J. Kuo (2010). J. Phys. Chem. A 114, 8170.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    A. Gutberlet, G. Schwaab, O. Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx (2009). Science 324, 1545.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    S. D. Flynn, D. Skvortsov, A. M. Morrison, T. Liang, M. Y. Choi, G. E. Douberly, and A. F. Vilesov (2010). J. Phys. Chem. Lett 1, (15), 2233.CrossRefGoogle Scholar
  23. 23.
    F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein (2006). J. Chem. Phys. 124, 224319.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    S. Vongehr and V. V. Kresin (2003). J. Chem. Phys. 119, 11124.CrossRefGoogle Scholar
  25. 25.
    P. Milanni and S. Lannotta (eds.), Cluster Beam Synthesis of Nano-structured Materials (Springer, Berlin, 1999), pp. 9-14.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Physical Science and TechnologyChina University of Mining and TechnologyXuzhouChina

Personalised recommendations