Advertisement

Journal of Cluster Science

, Volume 29, Issue 4, pp 743–755 | Cite as

Cost Effective, Green Synthesis of Copper Oxide Nanoparticles Using Fruit Extract of Syzygium alternifolium (Wt.) Walp., Characterization and Evaluation of Antiviral Activity

  • Pulicherla Yugandhar
  • Thirumalanadhuni Vasavi
  • Yagani Jayavardhana Rao
  • Palempalli Uma Maheswari Devi
  • Golla Narasimha
  • Nataru Savithramma
Original Paper
  • 145 Downloads

Abstract

The present study was aimed to synthesize copper oxide nanoparticles (CuO NPs) using fruit extract of Syzygium alternifolium and to evaluate their antiviral activity against Newcastle Disease Virus (NDV). The CuO NPs synthesized, were characterized by employing different spectroscopic and microscopic tools. The peak manifested at 285 nm in UV–Vis analysis confirms the synthesis of CuO NPs. FTIR analysis showed two conspicuous peaks at 3253 and 1461 cm−1 which correspond to O–H stretch of phenols and N–H bond of primary amines of proteins respectively. This result confirms their involvement in capping and stabilization of nanoparticles. The DLS and zeta potential studies revealed 61.1 nm average size and − 49.2 mV of zeta potential (ζ) value. The XRD crystallography investigations exhibited end-centered monoclinic crystalline nature nanoparticles with 17.5 nm average size. The microscopic (AFM, SEM, TEM) analyses unveiled spherical shaped particles with 2–69 nm size of the CuO NPs. These nanoparticles were settled in poly-dispersed and non-agglomerated state. They exhibited potential growth inhibitory effect on NDV virus. Based on the results of present work it can be emphasized that nanoparticles synthesized using plant extracts find a place in future nanomedicine.

Keywords

Syzygium alternifolium Green synthesis CuO NPs Characterization Antiviral activity 

Notes

Acknowledgements

The first author is thankful to University Grants Commission-Basic Science and Research for providing fellowship. All the authors are greatly acknowledged to SAIF-IIT Madras, JNTU-Hyderabad, DST-PURSE-SVU-Tirupati for providing instrumentation facilities. Finally thanking to Prof. K. Suma Kiran, Department of English, S.V. University for revising the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    J. E. Hulla, S. C. Sahu, and A. W. Hayes (2015). Hum. Exp. Toxicol. 34, 1318–1321.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    J. S. Ikhmayies (2014). JOM 66, 28–29.CrossRefGoogle Scholar
  3. 3.
    I. Khan, K. Saeed, and I. Khan (2017). Arab. J. Chem.  https://doi.org/10.1016/j.arabjc.2017.05.011.CrossRefGoogle Scholar
  4. 4.
    P. Yugandhar, R. Haribabu, and N. Savithramma (2015). 3 Biotech. 5, 1031–1039.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    N. Pantidos and L. E. Horsfall (2014). J. Nanomed. Nanotechnol. 5, 1–10.CrossRefGoogle Scholar
  6. 6.
    G. Benelli (2018). Environ. Sci. Pollut. Res. 25, 10149–10150.CrossRefGoogle Scholar
  7. 7.
    G. Benelli and C. M. Lukehart (2017). J. Cluster Sci. 28, 1–2.CrossRefGoogle Scholar
  8. 8.
    P. Yugandhar and N. Savithramma (2016). Appl. Nanosci. 6, 223–233.CrossRefGoogle Scholar
  9. 9.
    P. Yugandhar and N. Savithramma (2015). Nano. Biomed. Eng. 7, 29–37.CrossRefGoogle Scholar
  10. 10.
    K. Jemal, B. V. Sandeep, and P. Sudhakar (2017). J. Nanomater. 14, 1–11.CrossRefGoogle Scholar
  11. 11.
    C. M. Kumar, P. Yugandhar, and N. Savithramma (2016). J. Intercult. Ethnopharmacol. 5, 79–85.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    M. Adnan, M. Patel, M. N. Reddy, and E. Alshammari (2018). Sci. Rep. 8, 1–12.CrossRefGoogle Scholar
  13. 13.
    M. P. Patil, D. Ngabire, H. H. P. Thi, M. Kim, and G. Kim (2017). J. Cluster Sci. 28, 119–132.CrossRefGoogle Scholar
  14. 14.
    G. Sahni, A. Panwar, and B. Kaur (2015). Int. Nano Lett. 5, 93–100.CrossRefGoogle Scholar
  15. 15.
    S. K. Chaudhuri and L. Malodia (2017). Appl. Nanosci. 7, 501–512.CrossRefGoogle Scholar
  16. 16.
    P. C. Nagajyothi, M. Pandurangan, D. H. Kim, T. V. M. Sreekanth, and J. Shim (2017). J. Cluster Sci. 28, 245–257.CrossRefGoogle Scholar
  17. 17.
    G. Sharmila and M. Thirumarimurugan (2017). J. Inorg. Organomet. Polym. 27, 668–673.CrossRefGoogle Scholar
  18. 18.
    B. Kumar, K. Smita, L. Cumbal, A. Debut, and Y. Angulo (2017). J. Saudi. Chem. Soc. 21, S475–S480.CrossRefGoogle Scholar
  19. 19.
    R. Sivaraj, P. K. Rahman, P. Rajiv, S. Narendhran, and R. Venckatesh (2014). Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 14, 255–258.CrossRefGoogle Scholar
  20. 20.
    S. Saif, A. Tahir, T. Asim, and Y. Chen (2016). Nanomaterials. 6, 1–15.Google Scholar
  21. 21.
    A. Y. Ghidana, T. M. Al-Antarya, and A. M. Awwadb (2016). Environ. Nanotechnol. Monit. Manag. 6, 95–98.CrossRefGoogle Scholar
  22. 22.
    V. V. T. Padil and M. Cernik (2013). Int. J. Nanomedicine 8, 889–898.PubMedCentralGoogle Scholar
  23. 23.
    P. Yugandhar, T. Vasavi, P. Uma Maheswari Devi, and N. Savithramma (2017). Appl. Nanosci. 7, 417–427.CrossRefGoogle Scholar
  24. 24.
    N. Savithramma, P. Yugandhar, and M. Lingarao (2014). J. Pharm. Sci. Res. 6, 83–88.Google Scholar
  25. 25.
    N. Savithramma, P. Yugandhar, R. Haribabu, and K. Sivaprasad (2014). J. Pharm. Sci. Res. 6, 382–388.Google Scholar
  26. 26.
    B. K. Rao and C. H. Rao (2001). Phytomedicine 8, 88–93.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    R. B. Kasetti, M. D. Rajasekhar, V. K. Kondeti, S. S. Fatima, E. G. Kumar, S. Swapna, B. Ramesh, and C. A. Rao (2010). Food. Chem. Toxicol. 48, 1078–1084.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    R. B. Kasetti, S. A. Nabi, S. Swapna, and C. Apparao (2012). Food. Chem. Toxicol. 50, 1425–1431.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    P. Yugandhar and N. Savithramma (2017). J. App. Pharm. Sci. 7, 73–85.CrossRefGoogle Scholar
  30. 30.
    M. Altikatoglu, A. Attar, F. Erci, C. M. Cristache, and I. Isildak (2017). Fresenius Environ. Bull. 26, 7832–7837.Google Scholar
  31. 31.
    M. Young, R. Alders, S. Grimes, P. Spradbrow, P. Dias, A. da Silva and Q. Lobo, Controlling Newcastle Disease in Village Chickens: A Laboratory Manual, 2nd edn. (ACIAR Monograph No. 87. Australian Centre for International Agricultural Research, Canberra, 2012), p. 143.Google Scholar
  32. 32.
    S. Azeem, M. Ashraf, M. A. Rasheed, A. A. Anjum, and R. Hameed (2015). Pak. J. Pharm. Sci. 28, 597–602.PubMedPubMedCentralGoogle Scholar
  33. 33.
    OIE, Manual of Standards for Diagnostic Tests and Vaccines, 3rd edn. (Office International des Epizooties, Paris, 1996), pp. 161–169.Google Scholar
  34. 34.
    OIE, Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees). World Organisation for Animal Health, 8th edn. (Office International des Epizooties, OIE, 2008), p. 448.Google Scholar
  35. 35.
    M. Govindarajan and G. Benelli (2017). J. Cluster Sci. 28, 15–36.CrossRefGoogle Scholar
  36. 36.
    P. Kuppusamy, S. Ilavenil, S. Srigopalram, G. P. Maniam, M. M. Yusoff, N. Govindan, and K. C. Choi (2017). J. Clean. Prod. 141, 1023–1029.CrossRefGoogle Scholar
  37. 37.
    L. B. Shi, P. F. Tang, W. Zhang, Y. P. Zhao, L. C. Zhang, and H. Zhang (2017). Trop. J. Pharm. Res. 16, 185–192.CrossRefGoogle Scholar
  38. 38.
    P. Kumari, P. K. Panda, E. Jha, K. Kumari, K. Nisha, M. A. Mallick, and S. K. Verma (2017). Sci. Rep. 7, 1–17.CrossRefGoogle Scholar
  39. 39.
    I. Rasoulpour and S. Jafarirad (2017). Inorg. Nano-Met. Chem. 47, 1599–1604.CrossRefGoogle Scholar
  40. 40.
    G. M. Sulaiman, A. T. Tawfeeq, and M. D. Jaaffer (2018). Biotechnol Prog. 34, 218–230.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman (2002). J. Mater. Process. Technol. 123, 133–145.CrossRefGoogle Scholar
  42. 42.
    M. Klinger and A. Jager (2015). J. Appl. Crystallogr. 48, 2012–2018.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    S. D. Kumar, G. Singaravelu, S. Ajithkumar, K. Murugan, M. Nicoletti, and G. Benelli (2017). J. Cluster Sci. 28, 359–367.CrossRefGoogle Scholar
  44. 44.
    R. M. S. T. Azarudeen, M. Govindarajan, A. Amsath, U. Muthukumaran, and G. Benelli (2017). J. Cluster Sci. 28, 179–203.CrossRefGoogle Scholar
  45. 45.
    J. A. Mahyoub, A. T. Aziz, C. Panneerselvam, K. Murugan, M. Roni, S. Trivedi, M. Nicoletti, U. W. Hawas, F. M. Shaher, M. A. Bamakhrama, A. Canale, and G. Benelli (2017). J. Cluster Sci. 28, 565–580.CrossRefGoogle Scholar
  46. 46.
    C. Kamaraj, G. Balasubramani, C. Siva, M. Raja, V. Balasubramanian, R. K. Raja, S. Tamilselvan, G. Benelli, and P. Perumal (2017). J. Cluster Sci. 28, 1667–1684.CrossRefGoogle Scholar
  47. 47.
    X. Hang, H. Peng, H. Song, Z. Qi, X. Miao, and W. Xu (2015). J. Virol. Methods 222, 150–157.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    A. P. Ashokan, M. Paulpandi, D. Dinesh, K. Murugan, C. Vadivalagan, and G. Benelli (2017). J. Cluster Sci. 28, 205–226.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Pulicherla Yugandhar
    • 1
  • Thirumalanadhuni Vasavi
    • 2
  • Yagani Jayavardhana Rao
    • 3
  • Palempalli Uma Maheswari Devi
    • 2
  • Golla Narasimha
    • 3
  • Nataru Savithramma
    • 1
  1. 1.Department of BotanySri Venkateswara UniversityTirupatiIndia
  2. 2.Department of Applied MicrobiologySri Padmavati Mahila VisvavidyalayamTirupatiIndia
  3. 3.Department of VirologySri Venkateswara UniversityTirupatiIndia

Personalised recommendations