Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 943–949 | Cite as

The New Arsenomolybdate Based on Monocapped Trivacant Keggin {H4AsIIIAsVMo9O34} Cluster and Cu–abi Complex: Synthesis, Structure, Photoluminescence and Catalysis Properties

  • Zhifeng Zhao
  • Zhanhua Su
  • Bowen Cong
  • Wei Gao
  • Xiujuan Ma
Original Paper
  • 45 Downloads

Abstract

A new organic–inorganic hybrid arsenomolybdate, formulated as, [{Cu(abi){H4AsIIIAsVMo9O34}](abi)4[Cu(abi)2]·H2O (1) (abi = 2-aminobenzimidazole) has been hydrothermally synthesized and structurally characterized by the elemental analysis, TG, IR, XRD, UV and single-crystal X-ray diffraction. Compound 1 represents the first example of monocapped trivacant Keggin {H4AsIIIAsVMo9O34}2− cluster as polydentate ligand linked to Cu–abi complexes and abi ligands through one covalent bond and fourteen hydrogen bonds. Compound 1 possesses two different four rings, which forms a 3D topology framework with schläfli symbol of {46·6·8·1820}{4}2{6}2{8}3. The photoluminescence and photocatalysis properties of 1 have been investigated. Moreover, we performed evaluation on its catalytic activity towards the hydrolysis of ethylene carbonate to produce ethylene glycol.

Keywords

Polyoxometalates Photoluminescence Photocatalysis Heterogeneous catalysis 

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Heilongjiang Province (No. QC2015011).

Supplementary material

10876_2018_1390_MOESM1_ESM.doc (2.1 mb)
Supplementary material 1 (DOC 2129 kb)

References

  1. 1.
    P.-P. Zhu, N. Sheng, G.-D. Liu, J.-Q. Sha, and X.-Y. Yang (2017). Polyhedron 131, 52–58.CrossRefGoogle Scholar
  2. 2.
    J.-Q. Sha, P.-P. Zhu, X.-Y. Yang, X. N. Li, X. Li, M. B. Yue, and K. F. Zhou (2017). Inorg. Chem. 56, 11998–12002.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    N. G. Armatas, W. Ouellette, K. Whitenack, J. Pelcher, H.-X. Liu, E. Romaine, C. J. O’Connor, and J. Zubieta (2009). Inorg. Chem. 48, 8897–8910.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    E. Burkholder, S. Wright, V. Golub, C. J. O’Connor, and J. Zubieta (2003). Inorg. Chem. 42, 7460–7471.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    D.-L. Long, R. Tsunashima, and L. Cronin (2010). Angew. Chem. Int. Ed. 49, 1736–1758.CrossRefGoogle Scholar
  6. 6.
    H.-J. Pang, M. Yang, L. Kang, H.-Y. Ma, B. Liu, S.-B. Li, and H. Liu (2013). J. Solid State Chem. 198, 440–444.CrossRefGoogle Scholar
  7. 7.
    P. J. Hagrman, D. Hagrman, and J. Zubieta (1999). Angew. Chem. Int. Ed. 38, 2638–2684.CrossRefGoogle Scholar
  8. 8.
    H.-P. Zhen, X.-L. Li, L.-J. Zhang, H. Lei, C. Yu, Y.-S. Zhou, S. Hassan, L.-B. Qin, and H. M. Asif (2015). RSC Adv. 5, 24550–24557.CrossRefGoogle Scholar
  9. 9.
    Y.-F. Zhao, Y.-Y. Yuan, X. Du, X.-H. Lin, F.-H. Liao, J.-L. Xie, J.-H. Lin, and J.-L. Sun (2016). CrystEngComm. 18, 521–524.CrossRefGoogle Scholar
  10. 10.
    X.-L. Wang, N. Li, A.-X. Tian, J. Ying, T.-J. Li, X.-L. Lin, J. Luan, and Y. Yang (2014). Inorg. Chem. 53, 7118–7129.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    X.-L. He, Y.-P. Liu, K.-N. Gong, Z.-G. Han, and X.-L. Zhai (2015). Inorg. Chem. 4, 1215–1217.CrossRefGoogle Scholar
  12. 12.
    Q.-X. Han, C. He, M. Zhao, B. Qi, J.-Y. Niu, and C.-Y. Duan (2013). J. Am. Chem. Soc. 135, 10186–10189.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    H. Miao, G.-H. Hu, J.-Y. Guo, H.-X. Wan, H. Mei, Y. Zhang, and Y. Xu (2015). Dalton Trans. 44, 694–700.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    G.-H. Hu, H. Miao, H. Mei, S. Zhou, and Y. Xu (2016). Dalton Trans. 45, 7947–7951.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    S. Ghodke and U. Chudasama (2013). Appl. Catal. A Gen. 453, 219–226.CrossRefGoogle Scholar
  16. 16.
    S.-S. Wang and G.-Y. Yang (2015). Chem. Rev. 115, 4893–4962.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    H. Lv, Y. V. Geletii, C. Zhao, J. W. Vickers, G. Zhu, Z. Luo, J. Song, T. Lian, D. G. Musaev, and G. L. Hill (2012). Chem. Soc. Rev. 41, 7572–7589.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    J. Miao, Y.-W. Liu, Q. Tang, D.-F. He, G.-C. Yang, Z. Shi, S.-X. Liu, and Q.-Y. Wu (2014). Dalton Trans. 43, 14749–14755.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Y.-F. Song and R. Tsunashima (2012). Chem. Soc. Rev. 41, 7384–7402.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    T. Yamase (1998). Chem. Rev. 98, 307–326.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    L.-L. Li, Q. Shen, G.-L. Xue, H.-S. Xu, H.-M. Hu, F. Feng, and J.-W. Wang (2008). Dalton Trans. 42, 5698–5700.CrossRefGoogle Scholar
  22. 22.
    F.-Y. Li and L. Xu (2011). Dalton Trans. 40, 4024–4034.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    W.-Q. Zhao, Z.-H. Su, Z.-F. Zhao, B.-W. Cong, L. Xia, and B.-B. Zhou (2015). Inorg. Chem. Commun. 61, 118–122.CrossRefGoogle Scholar
  24. 24.
    Q. He, E. Wang, W. You, and C. Hu (1999). J. Mol. Struct. 508, 217–221.CrossRefGoogle Scholar
  25. 25.
    Q.-X. Han, P.-T. Ma, J.-W. Zhao, Z.-L. Wang, W.-H. Yang, P.-H. Guo, J.-P. Wang, and J.-Y. Niu (2011). Cryst. Growth Des. 11, 436–444.CrossRefGoogle Scholar
  26. 26.
    Q.-X. Han, H.-X. Cao, P.-T. Ma, J.-W. Zhao, and J.-Y. Niu (2013). Inorg. Chem. Commun. 28, 7–11.CrossRefGoogle Scholar
  27. 27.
    Z.-F. Zhao, Z.-H. Su, W.-Q. Zhao, W. Gao, B.-W. Cong, and B.-B. Zhou (2016). J Clust. Sci. 27, 1579–1590.CrossRefGoogle Scholar
  28. 28.
    Z.-F. Zhao, Z.-H. Su, B.-W. Cong, W.-Q. Zhao, and X.-J. Ma (2017). Z. Anorg. Allg. Chem. 643, 980–984.CrossRefGoogle Scholar
  29. 29.
    B.-W. Cong, Z.-H. Su, Z.-F. Zhao, W.-Q. Zhao, X.-J. Ma, and B.-B. Zhou (2017). Inorg. Chem. Commun. 83, 11–15.CrossRefGoogle Scholar
  30. 30.
    B.-W. Cong, Z.-H. Su, Z.-F. Zhao, B.-Y. Yu, W.-Q. Zhao, and X.-J. Ma (2017). Dalton Trans. 46, 7577–7583.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    B.-W. Cong, Z.-H. Su, Z.-F. Zhao, and B. Wang (2017). CrystEngComm. 19, 7154–7161.CrossRefGoogle Scholar
  32. 32.
    B.-W. Cong, Z.-H. Su, Z.-F. Zhao, B.-Y. Yu, W.-Q. Zhao, L. Xia, X.-J. Ma, and B.-B. Zhou (2017). CrystEngComm. 19, 2739–2749.CrossRefGoogle Scholar
  33. 33.
    G. M. Sheldrick (ed), SHELXS 97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, 1997).Google Scholar
  34. 34.
    G. M. Sheldrick (ed), SHELXL 97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, 1997).Google Scholar
  35. 35.
    B.-W. Cong, Z.-H. Su, Z.-F. Zhao, W.-Q. Zhao, L. Xia, and B.-B. Zhou (2017). Polyhedron 127, 489–495.CrossRefGoogle Scholar
  36. 36.
    J.-Y. Niu, J.-A. Hua, X. Ma, and J.-P. Wang (2012). CrystEngComm. 14, 4060–4067.CrossRefGoogle Scholar
  37. 37.
    B.-W. Cong, Z.-H. Su, Z.-F. Zhao, W.-Q. Zhao, X.-J. Ma, Q. Xua, and L.-J. Dua (2018). New J. Chem. 42, 4596–4602.CrossRefGoogle Scholar
  38. 38.
    G. Marcì, E. I. García-López, and L. Palmisano (2014). Eur. J. Inorg. Chem. 1, 21–35.CrossRefGoogle Scholar
  39. 39.
    B. Ding, J. Li, E.-C. Yang, X.-G. Wang, and X.-J. Zhao (2007). Z. Anorg. Allg. Chem. 633, 1062–1065.CrossRefGoogle Scholar
  40. 40.
    X.-L. Luo, J.-N. Li, C.-H. Li, L.-P. Heng, Y.-Q. Dong, Z.-P. Liu, Z.-S. Bo, and B.-Z. Tang (2011). Adv. Mater. 23, 3261–3265.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    H.-L. Sun, R. Jiang, Z.-S. Li, Y.-Q. Dong, and M. Du (2013). CrystEngComm. 15, 1669–1672.CrossRefGoogle Scholar
  42. 42.
    H.-L. Sun, D.-D. Yin, Q. Chen, and Z.-Q. Wang (2013). Inorg. Chem. 52, 3582–3584.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Z.-F. Zhao, Y.-Z. Ding, J.-C. Bi, Z.-H. Su, Q.-H. Cai, L.-M. Gao, and B.-B. Zhou (2014). Appl. Catal. A Gen. 471, 50–55.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Material Science and EngineeringHeilongjiang University of Science and TechnologyHarbinChina
  2. 2.Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical EngineeringHarbin Normal UniversityHarbinChina

Personalised recommendations