Microwave Assisted Synthesis of Pure and Ag Doped SnO2 Quantum Dots as Novel Platform for High Photocatalytic Activity Performance

  • M. Parthibavarman
  • S. Sathishkumar
  • M. Jayashree
  • R. BoopathiRaja
Original Paper


In this study, we report a simple and fast synthetic route to prepare pure and Ag doped SnO2 quantum dots via one step microwave irradiation method for the first time. Variety of analytical techniques including XRD, Raman, TEM, EDS, XPS, UV and PL were used to investigate the influence of Ag dopant concentration on structural, morphological, compositional and optical properties of SnO2 nanoparticles. The XRD pattern showed a dominant tetragonal rutile structure of both pure and Ag doped SnO2 and formed directly during the microwave irradiation process. TEM images revealed that quantum dots and the average particle size increases by Ag doping. The EDS and XPS results proved that the presence of silver as Ag3+ species. The optical properly of SnO2 was significantly improved and narrowing the band gap (3.54–3.09 eV) of pure SnO2 by Ag doping, which is confirmed through UV and PL results. The photocatalytic behavior of the catalyst powders were investigated using methylene blue and rhodamine B (RhB) as model organic pollutants. A maximum RhB degradation efficiency of 97.5% is achieved under visible light irradiation for Ag doped SnO2 catalyst. Furthermore, the Ag–SnO2 QDs catalyst demonstrates good reusability and stability after the seven cycles.


Microwave processing X ray methods Chemical properties Transition metal oxides Catalyst Visible light 


Compliance with Ethical Standards

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.


  1. 1.
    A. M. Al-Hamdi, M. Sillanpää, and J. Dutta (2015). J. Rare Earths 33, 1275.CrossRefGoogle Scholar
  2. 2.
    M. N. Chong, B. Jin, C. W. Chow, and C. Saint (2010). Water Res. 44, 2997.CrossRefGoogle Scholar
  3. 3.
    D. H. Bremner, R. Molina, F. Martınez, J. A. Melero, and Y. Segura (2009). Appl. Catal. B 90, 380.CrossRefGoogle Scholar
  4. 4.
    J. Yang, X. Zhang, C. Wang, P. Sun, L. Wang, B. Xia, and Y. Liu (2012). Solid State Sci. 14, 139.CrossRefGoogle Scholar
  5. 5.
    C. Karunakaran, V. Rajeswari, and P. Gomathisankar (2011). Solid State Sci. 13, 923.CrossRefGoogle Scholar
  6. 6.
    M. Qamar, Z. H. Yamani, M. A. Gondal, and K. Alhooshani (2011). Solid State Sci. 13, 1748.CrossRefGoogle Scholar
  7. 7.
    A. Qurashi, Z. Zhong, and M. W. Alam (2010). Solid State Sci. 12, 1516.CrossRefGoogle Scholar
  8. 8.
    E. J. Li, K. Xia, S. F. Yin, W. L. Dai, S. L. Luo, and C. T. Au (2011). Mater. Chem. Phys. 125, 236.CrossRefGoogle Scholar
  9. 9.
    Z. J. Yang, L. L. Lv, Y. L. Dai, Z. H. Xv, and D. Qian (2010). Appl. Surf. Sci. 256, 2898.CrossRefGoogle Scholar
  10. 10.
    H. J. Snaith and C. Ducati (2010). Nano Lett. 10, 1259.CrossRefGoogle Scholar
  11. 11.
    C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, and J. Jiang (2009). J. Am. Chem. Soc. 132, 46.CrossRefGoogle Scholar
  12. 12.
    M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, and K. Thavamani (2014). J. Mater. Sci. Mater. Electron. 25, 730.CrossRefGoogle Scholar
  13. 13.
    M. Parthibavarman, V. Hariharan, C. Sekar, and V. N. Singh (2010). J. Optoelectron. Adv. Mater. 12, 1894.Google Scholar
  14. 14.
    F. P. Wang, X. T. Zhou, J. G. Zhou, T. K. Sham, and Z. F. Ding (2007). J. Phys. Chem. C 111, 18839.CrossRefGoogle Scholar
  15. 15.
    Md T Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M. M. Müller, H.-J. Kleebe, J. Ziegler, and W. Jaegermann (2012). Inorg. Chem. 51, 7764.CrossRefGoogle Scholar
  16. 16.
    V. Kumar, V. Kumar, S. Som, J. H. Neethling, M. Lee, O. M. Ntwaeaborwa, and H. C. Swart (2014). Nanotechnology 25, 135701–135709.CrossRefGoogle Scholar
  17. 17.
    M. Parthibavarman, B. Renganathan, and D. Sastikumar (2013). Curr. Appl. Phys. 13, 1537.CrossRefGoogle Scholar
  18. 18.
    V. Hariharan, R. Radhakrishnan, M. Parthibavarman, R. Dhilipkumar, and C. Sekar (2011). Talanta 85, 2166.CrossRefGoogle Scholar
  19. 19.
    A. Bouaine and N. Brihi (2009). J. Phys. Chem. C 111, 2924.CrossRefGoogle Scholar
  20. 20.
    C. V. Reddy, B. Babu, S. V. Prabhakar Vattikuti, R. V. S. S. N. Ravikumar, and J. Shim (2016). J. Lumin. 179, 26.CrossRefGoogle Scholar
  21. 21.
    L. M. Fang, X. T. Zu, Z. J. Li, S. Zhu, C. M. Liu, L. M. Wang, and F. Gao (2008). J. Mater. Sci. Mater. Electron. 19, 868.CrossRefGoogle Scholar
  22. 22.
    J. X. Zhou, M. S. Zhang, J. M. Hong, and Z. Yin (2006). Solid State Commun. 138, 242.CrossRefGoogle Scholar
  23. 23.
    Y. Z. Li, H. Zhang, Z. M. Guo, J. J. Han, X. J. Zhao, Q. N. Zhao, and S. J. Kim (2008). Langmuir 24, 8351.CrossRefGoogle Scholar
  24. 24.
    J. P. Huo, L. T. Fang, Y. L. Lei, G. C. Zeng, and H. P. Zeng (2014). J. Mater. Chem. A 2, 11040.CrossRefGoogle Scholar
  25. 25.
    Yu-Yang Bai, Lu Yi, and Jin-Ku Liu (2016). J. Hazard. Mater. 307, 26.CrossRefGoogle Scholar
  26. 26.
    S. Matsushima, Y. Teraoka, N. Miura, and N. Yamazoe (1988). Jpn. J. Appl. Phys. 27, 1798.CrossRefGoogle Scholar
  27. 27.
    X. Cao, L. Cao, W. Yao, and X. Ye (1996). Surf. Interface Anal. 24, 662.CrossRefGoogle Scholar
  28. 28.
    S. A. Ansari, M. M. Khan, M. O. Ansari, J. Lee, and M. H. Cho (2014). New J. Chem. 38, 2462.CrossRefGoogle Scholar
  29. 29.
    M. Arami, N. Y. Limaee, N. M. Mahmoodi, and N. Salman (2006). J. Hazard. Mater. 135, 171.CrossRefGoogle Scholar
  30. 30.
    I. Konstantinou and T. Albanis (2004). Appl. Catal. B 49, 1.CrossRefGoogle Scholar
  31. 31.
    S. Wu, H. Cao, S. Yin, X. Liu, and X. Zhang (2009). J. Phys. Chem. C 113, 17893.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.PG and Research Department of PhysicsChikkaiah Naicker CollegeErodeIndia
  2. 2.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  3. 3.Department of PhysicsNavarasam Arts and Science College for WomenErodeIndia

Personalised recommendations