Rectifying Behaviour and Photocatalytic Activity in ZnO Nanorods Array/Ag/CuSe Heterostructure

  • Ali RahmatiEmail author
  • Asma Farokhipour
Original Paper


Ag incorporated vertically aligned ZnO nanorods array/CuSe thin film (ZnO NRs/CuSe TF) have been fabricated via a solution route, thermal evaporation and magnetron sputtering process. Ternary ZnO nanorods/Ag/CuSe heterostructure was studied by X-ray diffractometry, field emission-scanning electron microscopy/energy dispersive X ray spectroscopy, current–voltage measurement and a UV–Vis–near IR spectrophotometer. The photocatalytic performance was estimated by the degradation of Rhodamine B solution under UV–Vis light irradiation. The photocatalytic efficiency of the ZnO NRs/Ag/CuSe heterostructure is higher than that of ZnO NRs/Ag and ZnO NRs/CuSe counterparts due to the robust effects of the three functional components coupling. The localized surface plasmon resonance and two Schottky junctions (e.g. Ag/ZnO and Ag/CuSe) motivates photogenerated electron–hole separation and transfer. This work presents an artificial manipulated system to enhance light harvesting, efficient charge separation and transfer, and low recombination rate in solar energy conversion.


ZnO nanorods array/Ag/CuSe heterostructure Localized surface plasmon resonance (LSPR) Charge separation Photocatalytic activity 



The corresponding author (Ali Rahmati) would like to acknowledge his wife, Mahla Ghaemi Moghadam for her patience and invaluable help.


  1. 1.
    L. Zhu, M. Hong, and G. W. Ho (2015). Nano Energy 11, 28–37.CrossRefGoogle Scholar
  2. 2.
    F. X. Xiao, J. Miao, H. B. Tao, S. F. Hung, H. Y. Wang, H. B. Yang, J. Chen, R. Chen, and B. Liu (2015). Small 11, 2115–2131.CrossRefGoogle Scholar
  3. 3.
    Y. J. Liu, L. Sun, J. G. Wu, T. Fang, R. Cai, and A. Wei (2015). Mater. Sci. Eng. B 194, 9–13.CrossRefGoogle Scholar
  4. 4.
    K. Xu, J. Wu, C. F. Tan, G. W. Ho, A. Wei, and M. Hong (2017). Nanoscale 9, 11574.CrossRefGoogle Scholar
  5. 5.
    C. Han, Z. Chen, N. Zhang, J. C. Colmenares, and Y. J. Xu (2015). Adv. Funct. Mater. 25, 221–229.CrossRefGoogle Scholar
  6. 6.
    J. G. Wu, T. Fang, R. Cai, S. Y. Li, Y. Wang, C. E. Zhao, and A. Wei (2016). RSC Adv. 6, 4145–4150.CrossRefGoogle Scholar
  7. 7.
    N. Zhang, S. Xie, B. Weng, and Y. J. Xu (2016). J. Mater. Chem. A 4, 18804–18814.CrossRefGoogle Scholar
  8. 8.
    X. Liu, J. Cao, B. Feng, L. Yang, M. Wei, H. Zhai, H. Liu, Y. Sui, J. Yang, and Y. Liu (2015). Superlattices Microstruct. 83, 447–458.CrossRefGoogle Scholar
  9. 9.
    B. Inceesungvorn, T. Teeranunpong, J. Nunkaew, S. Suntalelat, and D. Tantraviwat (2014). Catal. Commun. 54, 35–38.CrossRefGoogle Scholar
  10. 10.
    N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, J. Chen, and B. Inceesungvorn (2014). J. Colloid Interface Sci. 417, 402–409.CrossRefGoogle Scholar
  11. 11.
    X. Guo, H. J. Zhu, and Q. Li (2014). Appl. Catal. B Environ. 160–161, 408–414.CrossRefGoogle Scholar
  12. 12.
    Y. Sun, Y. Sun, T. Zhang, G. Chen, F. Zhang, D. Liu, W. Cai, Y. Li, X. Yang, and C. Li (2016). Nanoscale 8, 10774–10782.CrossRefGoogle Scholar
  13. 13.
    A. Rahmati, B. Rahmani, and A. Farokhipour (2018). J. Mater. Sci. Mater. Electron. 29, 6350–6360.CrossRefGoogle Scholar
  14. 14.
    N. Zhang, C. Han, Y. J. Xu, J. J. Foley IV, D. Zhang, J. Codrington, S. K. Gray, and Y. Sun (2016). Nat. Photonics 10, 473–482.CrossRefGoogle Scholar
  15. 15.
    Y. Wang, H. B. Fang, Y. Z. Zheng, R. Ye, X. Tao, and J. F. Chen (2015). Nanoscale 7, 19118–19128.CrossRefGoogle Scholar
  16. 16.
    C. Han, Q. Quan, H. M. Chen, Y. Sun, and Y. J. Xu (2017). Small 13, 1602947.CrossRefGoogle Scholar
  17. 17.
    S. Ren, G. Zhao, Y. Wang, B. Wang, and Q. Wang (2015). Nanotechnology 26, 125403.CrossRefGoogle Scholar
  18. 18.
    A. Astam, Y. Akaltun, and M. Yildirim (2016). Materials Letters 166, 9–11.CrossRefGoogle Scholar
  19. 19.
    T. Lu, S. Dong, C. Zhang, L. Zhang, and G. Cui (2016). Coord. Chem. Rev. 332, 75–99. Scholar
  20. 20.
    A. A. Yadav (2014). J. Mater. Sci. Mater. Electron. 25, 1251–1257.CrossRefGoogle Scholar
  21. 21.
    A. V. Kozytskiy, O. L. Stroyuk, and S. Y. Kuchmiy (2014). Catal. Today 230, 227–233.CrossRefGoogle Scholar
  22. 22.
    Z. Wu, H. Wang, Y. Xue, B. Li, and B. Geng (2014). J. Mater. Chem. A 2, 17502–17510.CrossRefGoogle Scholar
  23. 23.
    A. Rahmati, M. Yousefi, and Z. Anorg (2017). Allg. Chem. 643, 870–876.CrossRefGoogle Scholar
  24. 24.
    A. Rahmati and S. Zakeri-Afshar (2017). J. Mater. Sci. Mater. Electron. 28, 13032–13040.CrossRefGoogle Scholar
  25. 25.
    A. Di Mauro, M. E. Fragalà, V. Privitera, and G. Impellizzeri (2017). Mater. Sci. Semicond. Process. 69, 44–51.CrossRefGoogle Scholar
  26. 26.
    M. M. Momeni, I. Ahadzadeh, and A. Rahmati (2016). J. Mater. Sci. Mater. Electron. 27, 8646–8653.CrossRefGoogle Scholar
  27. 27.
    J. Pal, A. K. Sasmal, M. Ganguly, and T. Pal (2015). J. Phys. Chem. C 119, 3780–3790.CrossRefGoogle Scholar
  28. 28.
    H. Hiramatsu, I. Koizumi, K. B. Kim, H. Yanagi, T. Kamiya, M. Hirano, N. Matsunami, and H. Hosono (2008). J. Appl. Phys. 104, 113723.CrossRefGoogle Scholar
  29. 29.
    H. Liu, C. Hu, H. Zhai, J. Yang, X. Liu, and H. Jia (2017). RSC Adv. 7, 37220–37229.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceVali-e-Asr University of RafsanjanRafsanjanIran
  2. 2.Nanostructure Laboratory, Faculty of ScienceVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations