Tuning the Spectrum Properties of Fullerene C60: Using a Strong External Electric Field

  • Xiangyun Zhang
  • Yuzhu LiuEmail author
  • Xinyu Ma
  • Bumaliya Abulimiti
Original Paper


The electric field can change the absorption of fullerene C60 to different wavelengths of light by affecting the vibrational modes and electronic transitions. The IR spectrum of fullerene C60 under the strong electric field is studied on B3LYP/6-31G* basis set using density function theory. With the external electric field decreasing, silent modes Hg(1), Ag(1), Gu(2), Hg(5), Ag(2), Hu(7) become active. Meanwhile, UV–Vis spectrum, the excitation energy, excitation wavelength and oscillator strength of first fourteen excited states of fullerene C60 under the field are also studied in B3LYP/6-31G* basis set using time-dependent density functional theory. With the electric field increasing, the absorption peak of fullerene C60 occurs then shifts towards the long-wave region. The excitation energy decrease and the excitation wavelength increase correspondingly, and external electric field makes fullerene C60 absorb energy from 1.01 to 2.31 eV in theory. The energy gap decreases drastically from 2.74 to 1.38 eV, which contributed to tune the energy gap of fullerene C60 by the effect of the electric field in a wide range. It is possible to use electric field to tune fullerene C60 into new energy storage material.


External electric field Cluster Fullerene C60 IR spectrum Excited state 



This work was supported by the (National Natural Science Foundation of China) under Grant (Nos. 91850114, 11564040, and 21763027); Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China (No. 18KJA140002), Natural Science Foundation of JiangSu Province (No. BK20160958) and (‘Six Talent Peaks’ Project in Jiangsu Province) under Grant (No. 2015-JNHB-011). The authors are grateful to Prof. Aihua Liu from Jilin University for inspiration for this project and useful discussion on this work.

Supplementary material

10876_2018_1486_MOESM1_ESM.docx (192 kb)
Supplementary material 1 (DOCX 192 kb)


  1. 1.
    R. E. Smalley (1992). Acc. Chem. Res. 25, (3), 98–105.CrossRefGoogle Scholar
  2. 2.
    R. F. Bryan. ACS Symposium Series 481 edited by GS Hammond (1993), pp. 928–928.Google Scholar
  3. 3.
    M. S. Golden, M. Knupfer, J. Fink, J. F. Armbruster, T. R. Cummins, H. A. Romberg, … & E. Sohmen (1995). J. Phys. Condens. Matter 7, (43), 8219.Google Scholar
  4. 4.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. C. Smalley (1985). Nature 318, 162–163.CrossRefGoogle Scholar
  5. 5.
    A. Kost, L. Tutt, M. B. Klein, T. K. Dougherty, and W. E. Elias (1993). Opt. Lett. 18, (5), 334–336.CrossRefGoogle Scholar
  6. 6.
    Y. Chabre, D. Djurado, M. Armand, W. R. Romanow, N. Coustel, J. P. McCauley Jr., and A. B. Smith III (1992). J. Am. Chem. Soc. 114, (2), 764–766.CrossRefGoogle Scholar
  7. 7.
    M. M. Ross, H. H. Nelson, J. H. Callahan, and S. W. McElvany (1992). J. Phys. Chem. 96, (13), 5231–5234.CrossRefGoogle Scholar
  8. 8.
    H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, and K. Ohtani (2000). Nature 408, (6815), 944.CrossRefGoogle Scholar
  9. 9.
    L. J. Bartolotti, D. Rai, A. D. Kulkarni, S. P. Gejji, and R. K. Pathak (2014). Comput. Theor. Chem. 1044, 66–73.CrossRefGoogle Scholar
  10. 10.
    A. V. Tuchin, L. A. Bityutskaya, and E. N. Bormontov (2015). Eur. Phys. J. D 69, (3), 87.CrossRefGoogle Scholar
  11. 11.
    M. T. Baei, A. S. Ghasemi, E. T. Lemeski, A. Soltani, and N. Gholami (2016). J. Clust. Sci. 27, (4), 1081–1096.CrossRefGoogle Scholar
  12. 12.
    H. Shi, D. X. Zhao, and Z. Z. Yang (2015). Mol. Phys. 113, (23), 3801–3808.CrossRefGoogle Scholar
  13. 13.
    Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. He, and Q. Zhan (2008). Nat. Mater. 7, (6), 478.CrossRefGoogle Scholar
  14. 14.
    S. Shaik, D. Mandal, and R. Ramanan (2016). Nat. Chem. 8, (12), 1091.CrossRefGoogle Scholar
  15. 15.
    X. Xu, B. Liu, X. Wu, et al. (2018). Opt. Express 26, (20), 26576–26589.CrossRefGoogle Scholar
  16. 16.
    F. Wudl (1992). Acc. Chem. Res. 25, (3), 157–161.CrossRefGoogle Scholar
  17. 17.
    C. Parlak, Ö. Alver, and P. Ramasami (2017). J. Clust. Sci. 28, (5), 2645–2652.CrossRefGoogle Scholar
  18. 18.
    V. Schettino, M. Pagliai, L. Ciabini, and G. Cardini (2001). J. Phys. Chem. A 105, (50), 11192–11196.CrossRefGoogle Scholar
  19. 19.
    M. J. Frisch, et al., GAUSSIAN-09, Revision C.01 (GAUSSIAN Inc., Wallingford, CT, 2010).Google Scholar
  20. 20.
    A. Seif, E. Zahedi, and T. S. Ahmadi (2011). Eur. Phys. J. B 82, (2), 147–152.CrossRefGoogle Scholar
  21. 21.
    S. W. Tang, L. L. Sun, J. D. Feng, H. Sun, R. S. Wang, and Y. F. Chang (2009). Eur. Phys. J. D 53, (2), 197–204.CrossRefGoogle Scholar
  22. 22.
    M. Hesabi and M. Hesabi (2013). J. Nanostruct. Chem. 3, (1), 22.CrossRefGoogle Scholar
  23. 23.
    T. Lin, W. D. Zhang, J. Huang, and C. He (2005). J. Phys. Chem. B 109, (28), 13755–13760.CrossRefGoogle Scholar
  24. 24.
    A. D. Becke (1993). J. Chem. Phys. 98, (7), 5648–5652.CrossRefGoogle Scholar
  25. 25.
    V. Schettino, M. Pagliai, and G. Cardini (2002). J. Phys. Chem. A 106, (9), 1815–1823.CrossRefGoogle Scholar
  26. 26.
    P. Kjellberg, Z. He, and T. Pullerits (2003). J. Phys. Chem. B 107, (49), 13737–13742.CrossRefGoogle Scholar
  27. 27.
    F. C. Grozema, R. Telesca, H. T. Jonkman, L. D. A. Siebbeles, and J. G. Snijders (2001). J. Chem. Phys. 115, (21), 10014–10021.CrossRefGoogle Scholar
  28. 28.
    J. Menéndez and J. B. Page. (Springer, Berlin, Heidelberg, 2000), 27–95.Google Scholar
  29. 29.
    S. Sowlati-Hashjin and C. F. Matta (2013). J. Chem. Phys. 139, (14), 144101.CrossRefGoogle Scholar
  30. 30.
    L. Huang, L. Massa, and C. F. Matta (2014). Carbon 76, 310–320.CrossRefGoogle Scholar
  31. 31.
    K. Hedberg, L. Hedberg, D. S. Bethune, C. A. Brown, H. C. Dorn, R. D. Johnson, and M. De Vries (1991). Science 254, (5030), 410–412.CrossRefGoogle Scholar
  32. 32.
    L. D. Landau and E. M. Lifshitz Quantum Mechanics (Pergamon Press, New York, 1965).Google Scholar
  33. 33.
    D. Bauer and P. Mulser (1999). Phys. Rev. A 59, (1), 569.CrossRefGoogle Scholar
  34. 34.
    M. S. Baba, T. L. Narasimhan, R. Balasubramanian, and C. K. Mathews (1992). Int. J. Mass Spectrom. Ion Process. 114, (1–2), R1–R8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiangyun Zhang
    • 1
    • 2
  • Yuzhu Liu
    • 1
    • 2
    Email author
  • Xinyu Ma
    • 1
    • 2
  • Bumaliya Abulimiti
    • 3
  1. 1.Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and OceanNanjing University of Information Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET)NanjingPeople’s Republic of China
  3. 3.College of Physics and Electronic EngineeringXinjiang Normal UniversityUrumqiPeople’s Republic of China

Personalised recommendations