Advertisement

Journal of Cluster Science

, Volume 29, Issue 1, pp 67–74 | Cite as

Novel Visible-Light-Driven Photocatalyst Co3O4/FeWO4 for Efficient Decomposition of Organic Pollutants

  • Ashok Kumar Chakraborty
  • Md. Rashidul Islam
  • Md. Helal Uddin
  • Md. Masudur Rhaman
Original Paper

Abstract

A highly efficient and visible light (λ ≥ 420 nm) responsive composite photocatalyst, Co3O4/FeWO4 was prepared by simple impregnation method. The heterojunction semiconductors Co3O4/FeWO4 demonstrated notably high photocatalytic activity over a wide range of composition than the individual component Co3O4 or FeWO4 for the complete degradation of 1,4-dichlorobenzene (DCB) in aqueous phase under visible light irradiation. The photocatalytic activity of composite was optimized at 1/99 Co3O4/FeWO4 composition. After 2 h of visible light irradiation 51% decomposition of 1,4-dichlorobenzene (DCB) was observed utilizing 1/99 Co3O4/FeWO4 photocatalyst while the end members demonstrated a negligible degradation under the same experimental condition. The valence band (VB) and conduction band (CB) of Co3O4 is located above the VB and CB of FeWO4, respectively. Both the semiconductors Co3O4 and FeWO4 exhibit strong absorption over the wide range of visible light. The obviously enhanced photocatalytic performance of Co3O4/FeWO4 composite has been discussed on the hole (h+) as well as electron (e) transfer mechanism between the VB and CB of individual semiconductors.

Keywords

Composite photocatalyst Co3O4/FeWO4 Visible light Decomposition 1,4-Dichlorobenzene (DCB) 

References

  1. 1.
    L. Kruczynski, H. D. Gesser, C. W. Turner, and E. A. Speers (1981). Nature 291, 399.CrossRefGoogle Scholar
  2. 2.
    S. U. M. Khan, M. Al-Shahry, and W. B. Ingler Jr. (2002). Science 297, 2243.CrossRefGoogle Scholar
  3. 3.
    X. Chen and S. S. Mao (2007). Chem. Rev. 107, 2891.CrossRefGoogle Scholar
  4. 4.
    N. Qin, Y. Liu, W. Wu, L. Shen, X. Chen, Z. Li, and L. Wu (2015). Langmuir 31, 1203.CrossRefGoogle Scholar
  5. 5.
    Y. Chen, C. Chuang, Z. Qin, S. Shen, T. Doane, and C. Burda (2017). Nanotechnology 28, 084002.CrossRefGoogle Scholar
  6. 6.
    H. S. Chung, G. S. Han, S. Y. Park, H. W. Shin, T. K. Ahn, S. Jeong, I. S. Cho, and H. S. Jung (2015). ACS Appl. Mater. Interfaces 7, 10324.CrossRefGoogle Scholar
  7. 7.
    C. G. Mendoza, S. O. Ruiz, A. H. Gordillo, R. López, G. J. Acatitla, H. A. Calderón, and R. Gómez (2016). J. Chem. Technol. Biotechnol. 91, 2198.CrossRefGoogle Scholar
  8. 8.
    B. Gao, Y. J. Kim, A. K. Chakraborty, and W. I. Lee (2008). Appl. Catal. B Environ. 83, 202.CrossRefGoogle Scholar
  9. 9.
    Y. J. Kim, B. Gao, S. Y. Han, M. H. Jung, A. K. Chakraborty, T. Ko, C. Lee, and W. I. Lee (2009). J. Phys. Chem. C 113, 19179.CrossRefGoogle Scholar
  10. 10.
    S. Y. Chai, Y. J. Kim, M. H. Jung, A. K. Chakraborty, D. W. Jung, and W. I. Lee (2009). J. Catal. 262, 144.CrossRefGoogle Scholar
  11. 11.
    F. Riboni, M. V. Dozzi, M. C. Paganini, E. Giamello, and E. Selli (2017). Catal. Today. doi: 10.1016/j.cattod.2016.12.031.Google Scholar
  12. 12.
    S. B. Rawal, A. K. Chakraborty, and W. I. Lee (2009). Bull. Korean Chem. Soc. 30, 2613.CrossRefGoogle Scholar
  13. 13.
    A. K. Chakraborty, M. E. Hossain, M. M. Rhaman, and K. M. A. Sobahan (2014). J. Environ. Sci. 26, 458.CrossRefGoogle Scholar
  14. 14.
    A. K. Chakraborty, M. S. Akter, M. A. Haque, G. M. A. Khan, and M. S. Alam (2013). J. Clust. Sci. 24, 701.CrossRefGoogle Scholar
  15. 15.
    A. K. Chakraborty and M. A. Kebede (2012). React. Kinet. Mech. Catal. 106, 83.CrossRefGoogle Scholar
  16. 16.
    S. P. Adhikari, H. Dean, Z. D. Hood, R. Peng, K. L. More, I. Ivanov, Z. Wu, and A. Lachgar (2015). RSC Adv. 5, 91094.CrossRefGoogle Scholar
  17. 17.
    X. Li, F. Chen, C. Lian, and S. Zheng (2016). J. Clust. Sci. 27, 1877.CrossRefGoogle Scholar
  18. 18.
    K. Varadharajan, B. Singaram, R. Mani, and J. Jeyaram (2016). J. Clust. Sci. 27, 1815.CrossRefGoogle Scholar
  19. 19.
    R. X. Chen, S. L. Zhu, J. Mao, Z. D. Cui, X. J. Yang, Y. Q. Liang, and Z. Y. Li (2015). Int. J. Photoenergy 2015, 183468.Google Scholar
  20. 20.
    M. Nikl (2006). Meas. Sci. Technol. 17, 37.CrossRefGoogle Scholar
  21. 21.
    F. A. Danevicha, A. S. Georgadze, V. V. Kobychev, B. N. Kropivyansky, and O. Missevitch (2006). Nucl. Instrum. Methods Phys. Res. Sect. A 556, 259.CrossRefGoogle Scholar
  22. 22.
    A. Dias and V. S. T. Ciminelli (2001). J. Eur. Ceram. Soc. 21, 2061.CrossRefGoogle Scholar
  23. 23.
    Y. X. Zhou, Q. Zhang, J. Y. Gong, and S. H. Yu (2008). J. Phys. Chem. C 112, 13383.CrossRefGoogle Scholar
  24. 24.
    W. B. Hu, Y. M. Zhao, Z. L. Liu, C. W. Dunnill, D. H. Gregory, and Y. Q. Zhu (2008). Chem. Mater. 20, 5657.CrossRefGoogle Scholar
  25. 25.
    J. Lin, J. Lin, and Y. Zhu (2007). Inorg. Chem. 46, 8372.CrossRefGoogle Scholar
  26. 26.
    D. Ye, D. Li, W. Zhang, M. Sun, Y. Hu, Y. Zhang, and X. Fu (2008). J. Phys. Chem. C 112, 17351.CrossRefGoogle Scholar
  27. 27.
    Y. C. Chen, Y. G. Lin, L. C. Hsu, A. Tarasov, P. T. Chen, M. Hayashi, J. Ungelenk, Y. K. Hsu, and C. Feldmann (2016). ACS Catal. 6, 2357.CrossRefGoogle Scholar
  28. 28.
    Y. X. Zhou, H. B. Yao, Q. Zhang, J. Y. Gong, S. J. Liu, and S. H. Yu (2009). Inorg. Chem. 48, 1082.CrossRefGoogle Scholar
  29. 29.
    X. Yan, K. Liu, and W. Shi (2017). Colloids Surf. A Physicochem. Eng. Asp. 520, 138.CrossRefGoogle Scholar
  30. 30.
    F. D. Yu, H. Shichun, Z. J. Liu, and S. C. Lee (2011). J. Phys. Chem. C 115, 241.CrossRefGoogle Scholar
  31. 31.
    L. Wang and W. Z. Wang (2012). CrystEngComm 14, 3315.CrossRefGoogle Scholar
  32. 32.
    L. Zhang, W. Wang, L. Zhou, and H. Xu (2007). Small 3, 1618.CrossRefGoogle Scholar
  33. 33.
    R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Mart´ınez-Garc´ıa, and A. Segura (2008). EPL 83, 37002.CrossRefGoogle Scholar
  34. 34.
    S. H. Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu, and Y. T. Qian (2003). Adv. Funct. Mater. 13, 639.CrossRefGoogle Scholar
  35. 35.
    M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, and Y. Wu (2006). J. Phys. Chem. B 110, 20211.CrossRefGoogle Scholar
  36. 36.
    A. Gulino and I. Fragala (2005). Inorg. Chim. Acta 358, 4466.CrossRefGoogle Scholar
  37. 37.
    Q. Xiao, J. Zhang, C. Xiao, and X. Tan (2008). Catal. Commun. 9, 1247.CrossRefGoogle Scholar
  38. 38.
    Y. Xu and M. A. A. Schoonen (2000). Am. Mineral. 85, 543.CrossRefGoogle Scholar
  39. 39.
    L. R. Hou, C. Z. Yuan, and Y. Peng (2006). J. Mol. Catal. A Chem. 252, 132.CrossRefGoogle Scholar
  40. 40.
    Y. I. Kim, S. J. Atherton, E. S. Brigham, and T. E. Mallouk (1993). J. Phys. Chem. 97, 11802.CrossRefGoogle Scholar
  41. 41.
    M. A. Butler and D. S. Ginley (1978). J. Electrochem. Soc. 125, 228.CrossRefGoogle Scholar
  42. 42.
    A. Hjelm, C. G. Granqvist, and J. M. Wills (1996). Phys. Rev. B 54, 2436.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ashok Kumar Chakraborty
    • 1
  • Md. Rashidul Islam
    • 1
  • Md. Helal Uddin
    • 1
  • Md. Masudur Rhaman
    • 2
  1. 1.Department of Applied Chemistry and Chemical EngineeringIslamic UniversityKushtiaBangladesh
  2. 2.Department of ChemistryChittagong University of Engineering and TechnologyChittagongBangladesh

Personalised recommendations