Advertisement

Journal of Cluster Science

, Volume 28, Issue 5, pp 2979–2995 | Cite as

Optimization of Influential Factors on the Photocatalytic Performance of TiO2–Graphene Composite in Degradation of an Organic Dye by RSM Methodology

  • Farnosh Tavakoli
  • Alireza BadieiEmail author
  • Fatemeh Yazdian
  • Ghodsi Mohammadi Ziarani
  • Jahanbakhsh Ghasemi
Original Paper

Abstract

Photocatalytic behavior was investigated for TiO2–graphene nanocomposite in the degradation of acid orange 7 (AO7) as a model pollutant under ultraviolet light in aqueous solution. XRD, SEM, TEM, DRS, FT-IR and EDX techniques were used for the characterization of the prepared nanocomposite. The effect of synthesis variables such as weight ratio of TiO2 to graphene and operational key factors such as initial dye concentration, irradiation time, catalyst dosage and solution distance from UV lamp were studied in the photocatalytic degradation of AO7. This excellent catalytic ability is mainly attributed to the synergic effect of photocatalyst and adsorbent. The effect of operational variables was optimized for the photocatalytic degradation of AO7 as a pollutant model using the RSM technique. In this case, the amount of the determination coefficient (R2 = 0.97) shows that 97% of the variability in the response could be described by the model. The maximum degradation efficiency (96%) was achieved at the optimum operational conditions: catalyst dosage of 0.5 g L−1, the irradiation time of 50 min and distance the solution from UV lamp of 0.3 cm.

Keywords

Graphene TiO2 Photocatalyst Ultraviolet light Acid orange 7 

Notes

Acknowledgements

Authors are grateful to Council of University of Tehran and Center for International Scientific Studies Collaboration for providing financial support to undertake this work.

References

  1. 1.
    T. Robinson, G. McMullan, R. Marchant, and P. Nigam (2001). Bioresour Technol 77, 247.CrossRefGoogle Scholar
  2. 2.
    B. Y. Chen, M. M. Zhang, C. T. Chang, Y. Ding, K. L. Lin, C. S. Chiou, C. C. Hsueh, and H. Xu (2010). Bioresour Technol 101, 4737.CrossRefGoogle Scholar
  3. 3.
    I. Arslan Alaton and J. L. Ferry (2002). Dyes Pigm 54, 25.CrossRefGoogle Scholar
  4. 4.
    K. Golka, S. Kopps, and Z. W. Myslak (2004). Toxicol. Lett 151, 203.CrossRefGoogle Scholar
  5. 5.
    F. Saadati, N. Keramati, and M. Mehdipour Ghazi (2016). Environmental Science and Technology 46, 757.CrossRefGoogle Scholar
  6. 6.
    X. Li, F. Chen, C. Lian, S. Zheng, Q. Hu, S. Duo, W. Li, and C. Hu (2016). Journal of Cluster Science 27, 1877.CrossRefGoogle Scholar
  7. 7.
    A. R. Nezamzadeh-Ejhieh and A. Shirzadi (2014). Chemosphere 107, 136.CrossRefGoogle Scholar
  8. 8.
    L. Yue, Sh Wang, G. Shan, W. Wu, L. Qiang, and L. Zhu (2015). Applied Catalysis B: Environmental 176, 11.CrossRefGoogle Scholar
  9. 9.
    Z. Xian, R. Liu, H. Li, S. Zhang, Z. Yang, W. Zheng, and C. Chen (2016). Journal of Cluster Science 27, 241.CrossRefGoogle Scholar
  10. 10.
    Z. Yaping, J. Chengguang, P. Ran, M. A. Feng, and O. U. Guangnan (2014). Journal of Central South University 21, 310.CrossRefGoogle Scholar
  11. 11.
    A. Azarian (2015). Journal of Cluster Science 26, 1607.CrossRefGoogle Scholar
  12. 12.
    J. Zhang, G. F. Huang, D. Li, B. X. Zhou, S. Chang, A. Pan, and W. Q. Huang (2016). Appl. Phys. A 122, 994.CrossRefGoogle Scholar
  13. 13.
    X. Wang, Y. Sang, X. Yu, B. Liu, and H. Liu (2016). Appl. Phys. A 122, 884.CrossRefGoogle Scholar
  14. 14.
    A. Alinsafi, F. Evenou, E. M. Abdulkarim, M. N. Pons, O. Zahraa, A. Benhammou, A. Yaacoubi, and A. Nejmeddine (2007). Dyes Pigm 74, 439.CrossRefGoogle Scholar
  15. 15.
    D. Beydoun, R. Amal, G. Low, and S. McEvoy (1999). J. Nanopart. Res 1, 4394.CrossRefGoogle Scholar
  16. 16.
    T. Yoshida, N. Yaghi, R. Nakagou, A. Sugimura, and I. Umezu (2014). Appl. Phys. A, DOI:  10.1007/s00339-014-8378-3
  17. 17.
    J. Chen, Y. Qian, and X. Wei (2010). J. Mater. Sci 45, 6018.CrossRefGoogle Scholar
  18. 18.
    A. Abbasi, D. Ghanbari, M. Salavati-Niasari, and M. Hamadanin (2016). Journal of Materials Science: Materials in Electronics. doi: 10.1007/s10854-016-4361-4.Google Scholar
  19. 19.
    J. W. Shi, J. T. Zheng, and X. J. Ji (2010). Environmental Engineering Science 27, 923.CrossRefGoogle Scholar
  20. 20.
    B. Paul, W. N. Martens, and R. L. Frost (2012). Applied Clay Science 57, 49.CrossRefGoogle Scholar
  21. 21.
    H. Wang, B. Yang, and W. J. Zhang (2010). Advanced Materials Research 129, 733.CrossRefGoogle Scholar
  22. 22.
    S. Liu, M. Lim, and R. Amal (2014). Chemical Engineering Science 105, 46.CrossRefGoogle Scholar
  23. 23.
    F. Tavakoli and M. Salavati Niasari (2014). J. Ind & Eng chem 20, 3170.CrossRefGoogle Scholar
  24. 24.
    M. Salavati Niasari and F. Tavakoli (2015). J. Ind & Eng chem 21, 1208.CrossRefGoogle Scholar
  25. 25.
    V. Singh, D. Joung, L. Zhai, S. Das, S. Khondaker, and S. Seal (2011). Materials Science 56, 1178.Google Scholar
  26. 26.
    V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal (2011). Progress in Materials Science 56, 1178.CrossRefGoogle Scholar
  27. 27.
    X. Zhang, X. Liu, W. Zheng, and J. Zhu (2012). Carbohydrate Polymers 88, 26.CrossRefGoogle Scholar
  28. 28.
    S. Escobedo, B. Serrano, A. Calzada, J. Moreira, and H. D. Lasa (2016). Fuel 181, 438.CrossRefGoogle Scholar
  29. 29.
    I. V. Lightcap, T. H. Kosel, and P. V. Kamat (2010). Nano Lett 10, 577.CrossRefGoogle Scholar
  30. 30.
    H. Zhang, X. J. Lv, Y. M. Li, Y. Wang, and J. H. Li (2010). ACS Nano 4, 380.CrossRefGoogle Scholar
  31. 31.
    Y. H. Zhang, Z. R. Tang, X. Z. Fu, and Y. J. Xu (2010). ACS Nano 4, 7303.CrossRefGoogle Scholar
  32. 32.
    X. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, and F. Huang (2007). J. Phys. Chem. C 111, 18288.CrossRefGoogle Scholar
  33. 33.
    L. Chen, D. Jiang, T. He, Z. Wu, and M. Chen (2013). Cryst. Eng. Commun 15, 7556.CrossRefGoogle Scholar
  34. 34.
    M. A. Behnajady, N. Modirshahla, M. Shokri, H. Elham, and A. Zeininezhad (2008). J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng 43, 460.CrossRefGoogle Scholar
  35. 35.
    S. Chakrabarti and B. K. Dutta (2004). J. Hazard. Mater 112, 269.CrossRefGoogle Scholar
  36. 36.
    M. A. Behnajady, N. Modirshahla, N. Daneshvar, and M. Rabbani (2007). Chem. Eng. J 127, 167.CrossRefGoogle Scholar
  37. 37.
    L. A. Ghule, A. A. Patil, K. B. Sapnar, S. D. Dhole, and K. M. Garadkar (2011). Toxicol. Environ. Chem 93, 623.CrossRefGoogle Scholar
  38. 38.
    M.A. Behnajady, H. Eskandarloo, Res. Chem. Intermed. http://dx.doi.org/10.1007/s11164-013-1327-5.
  39. 39.
    B. Neppolian, H. C. Choi, S. Sakthivel, B. Arabindoo, and V. Murugesan (2002). J. Hazard. Mater 89, 303.CrossRefGoogle Scholar
  40. 40.
    S. D. Perera, R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K. J. Balkus (2012). ACS Catal 2, 949.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Farnosh Tavakoli
    • 1
  • Alireza Badiei
    • 1
    Email author
  • Fatemeh Yazdian
    • 2
  • Ghodsi Mohammadi Ziarani
    • 3
  • Jahanbakhsh Ghasemi
    • 1
  1. 1.School of Chemistry, College of ScienceUniversity of TehranTehranIran
  2. 2.Department of Life Science EngineeringFaculty of New Science and EngineeringTehranIran
  3. 3.Department of ChemistryAlzahra UniversityTehranIran

Personalised recommendations