Advertisement

Journal of Cluster Science

, Volume 28, Issue 5, pp 2733–2751 | Cite as

Morphological Evolution of In2O3 Crystallites by Metallothermal Reaction Growth: A Unified Elucidation

  • Jian Shang
  • Bin Huang
  • Jiefeng Yu
  • Yu Wang
  • Huanjun Song
  • Jingxin Dai
  • Chen Chen
  • Lianjun Zheng
  • Zixing Ye
  • Jianhui Cheng
  • Jianlong Li
  • Wei Chen
  • Guo Qin Xu
  • Boon K. TeoEmail author
  • Kai WuEmail author
Original Paper
  • 143 Downloads

Abstract

Metallothermal reaction growth of In2O3 nanocrystals via chemical vapor deposition technique gave rise to different morphologies, ranging from octahedron to triamond triangular frustum and their corresponding truncated variants. The formation of these polyhedral crystalline structures was triggered by high local temperature and supersaturation ratios generated by the intensive exothermic reactions at the source. There are several distinct co-playing forces at work: kinetic and thermodynamic effects in the gas phase and surface nucleation and growth on the Si(111) substrate. The experimentally observed shape evolution and size variation can be rationalized in terms of a unified mechanism.

Keywords

Metallothermal reaction Crystalites Chemical vapor deposition Nucleation Growth 

Notes

Acknowledgement

We acknowledge financial support by National Natural Science Foundation of China (91527303, 21333001) and Singapore NRF CREATE-SPURc project (R-143-001-205-592).

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Supplementary material

10876_2017_1244_MOESM1_ESM.docx (629 kb)
Supplementary material 1 (DOCX 628 kb)

References

  1. 1.
    J. Yu, Y. Wang, W. Wen, D. Yang, B. Huang, J. Li, and K. Wu (2010). Adv Mater 22, 1479–1483.CrossRefGoogle Scholar
  2. 2.
    A. Walsh, J. L. Da Silva, S. H. Wei, C. Körber, A. Klein, L. F. J. Piper, et al. (2008). Phys Rev Lett 100, 167402.CrossRefGoogle Scholar
  3. 3.
    M. Marezio (1966). Acta Crystallogr 20, 723–728.CrossRefGoogle Scholar
  4. 4.
    TMS 140th Annual Meeting and Exhibition (Wiley, New York, 2011), p. 51.Google Scholar
  5. 5.
    C. T. Prewitt, R. D. Shannon, D. B. Rogers, and A. W. Sleight (1969). Inorg Chem 8, 1985–1993.CrossRefGoogle Scholar
  6. 6.
    C. M. Leroy, A. E. Maegli, K. Sivula, T. Hisatomi, N. Xanthopoulos, E. H. Otal, and M. Grätzel (2012). Chem Commun 48, 820–822.CrossRefGoogle Scholar
  7. 7.
    H. Jia, Y. Zhang, X. Chen, J. Shu, X. Luo, Z. Zhang, and D. Yu (2003). Appl Phys Lett 82, 4146–4148.CrossRefGoogle Scholar
  8. 8.
    S. Q. Li, Y. X. Liang, and T. H. Wang (2006). Appl Phys Let 88, 3107.Google Scholar
  9. 9.
    C. Li, D. Zhang, S. Han, X. Liu, T. Tang, and C. Zhou (2003). Adv Mater 15, 143–146.CrossRefGoogle Scholar
  10. 10.
    D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. Zhou (2003). Appl Phys Lett 82, 112–114.CrossRefGoogle Scholar
  11. 11.
    P. Nguyen, H. T. Ng, T. Yamada, M. K. Smith, J. Li, J. Han, and M. Meyyappan (2004). Nano Letters 4, 651–657.CrossRefGoogle Scholar
  12. 12.
    M. Hafeez, T. Zhai, A. S. Bhatti, Y. Bando, and D. Golberg (2012). Cryst Growth Des 12, 4935–4943.CrossRefGoogle Scholar
  13. 13.
    E. Comini (2006). Anal Chim Acta 568, 28–40.CrossRefGoogle Scholar
  14. 14.
    X. Lai, D. Wang, N. Han, J. Du, J. Li, C. Xing, et al. (2010). Chem Mater 22, 3033–3042.CrossRefGoogle Scholar
  15. 15.
    C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, and C. Zhou (2003). Appl Phys Lett 82, 1613–1615.CrossRefGoogle Scholar
  16. 16.
    M. Kaur, N. Jain, K. Sharma, S. Bhattacharya, M. Roy, A. K. Tyagi, et al. (2008). Sens Actuators B: Chem 133, 456–461.CrossRefGoogle Scholar
  17. 17.
    C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, et al. (2003). Appl Phys Lett 83, 4014–4016.CrossRefGoogle Scholar
  18. 18.
    M. Curreli, C. Li, Y. Sun, B. Lei, M. A. Gundersen, M. E. Thompson, and C. Zhou (2005). J Am Chem Soc 127, 6922–6923.CrossRefGoogle Scholar
  19. 19.
    M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang (2001). Appl Phys Lett 79, 839–841.CrossRefGoogle Scholar
  20. 20.
    D. Chu, Y. Masuda, T. Ohji, and K. Kato (2010). Langmuir 26, 14814–14820.CrossRefGoogle Scholar
  21. 21.
    B. Cheng and E. T. Samulski (2001). J Mater Chem 11, 2901–2902.CrossRefGoogle Scholar
  22. 22.
    E. Li, Z. Cheng, J. Xu, Q. Pan, W. Yu, and Y. Chu (2009). Cryst Growth Des 9, 2146–2151.CrossRefGoogle Scholar
  23. 23.
    C. H. Lee, M. Kim, T. Kim, A. Kim, J. Paek, J. W. Lee, et al. (2006). J Am Chem Soc 128, 9326–9327.CrossRefGoogle Scholar
  24. 24.
    Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang, W. Yu, and Y. Qian (2005). Crys Growth Des 5, 147–150.CrossRefGoogle Scholar
  25. 25.
    J. Du, M. Yang, S. Nam Cha, D. Rhen, M. Kang, and D. J. Kang (2008). Cryst Growth Des 8, 2312–2317.CrossRefGoogle Scholar
  26. 26.
    J. Mu, C. Shao, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, et al. (2012). J Mater Chem 22, 1786–1793.CrossRefGoogle Scholar
  27. 27.
    L. Dai, X. L. Chen, J. K. Jian, M. He, T. Zhou, and B. Q. Hu (2002). Appl Phys A 75, 687–689.CrossRefGoogle Scholar
  28. 28.
    J. S. Jeong, J. Y. Lee, C. J. Lee, S. J. An, and G. C. Yi (2004). Chem Phys Lett 384, 246–250.CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, H. Ago, J. Liu, M. Yumura, K. Uchida, S. Ohshima, et al. (2004). J Cryst Growth 264, 363–368.CrossRefGoogle Scholar
  30. 30.
    J. S. Jeong and J. Y. Lee (2010). Nanotechnology 21, 405601.CrossRefGoogle Scholar
  31. 31.
    Z. W. Pan, Z. R. Dai, and Z. L. Wang (2001). Science 291, 1947–1949.CrossRefGoogle Scholar
  32. 32.
    X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao (2003). Chem Phys Lett 373, 28–32.CrossRefGoogle Scholar
  33. 33.
    K. C. Kam, F. L. Deepak, A. K. Cheetham, and C. N. R. Rao (2004). Chem Phys Lett 397, 329–334.CrossRefGoogle Scholar
  34. 34.
    J. Zhang, X. Qing, F. Jiang, and Z. Dai (2003). Chem Phys Lett 371, 311–316.CrossRefGoogle Scholar
  35. 35.
    M. Shi, F. Xu, K. Yu, Z. Zhu, and J. Fang (2007). J Phys Chem C 111, 16267–16271.CrossRefGoogle Scholar
  36. 36.
    Y. Yan, L. Zhou, Y. Zhang, J. Zhang, and S. Hu (2008). Cryst Growth Des 8, 3285–3289.CrossRefGoogle Scholar
  37. 37.
    Y. Hao, G. Meng, C. Ye, and L. Zhang (2005). Cryst Growth Des 5, 1617–1621.CrossRefGoogle Scholar
  38. 38.
    Y. Yan, Y. Zhang, H. Zeng, J. Zhang, X. Cao, and L. Zhang (2007). Nanotechnology 18, 175601.CrossRefGoogle Scholar
  39. 39.
    C. H. Ho, C. H. Chan, L. C. Tien, and Y. S. Huang (2011). J Phys Chem C 115, 25088–25096.CrossRefGoogle Scholar
  40. 40.
    Y. G. Yan, Y. Zhang, H. B. Zeng, and L. D. Zhang (2007). Cryst Growth Des 7, 940–943.CrossRefGoogle Scholar
  41. 41.
    S. T. Jean and Y. C. Her (2010). Cryst Growth Des 10, 2104–2110.CrossRefGoogle Scholar
  42. 42.
    M. R. Shi, F. Xu, K. Yu, J. H. Fang, and X. M. Ji (2008). Appl Phys A 90, 113–117.CrossRefGoogle Scholar
  43. 43.
    L. W. Yin, Y. Bando, D. Golberg, and M. S. Li (2004). Adv Mater 16, 1833–1838.CrossRefGoogle Scholar
  44. 44.
    J. J. De Yoreo and P. G. Vekilov (2003). Rev Mineral Geochem 54, 57–93.CrossRefGoogle Scholar
  45. 45.
    Z. L. Wang (2000). J Phys Chem B 104, 1153–1175.CrossRefGoogle Scholar
  46. 46.
    K. H. Zhang, A. Walsh, C. R. A. Catlow, V. K. Lazarov, and R. G. Egdell (2010). Nano letters 10, 3740–3746.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Jian Shang
    • 1
  • Bin Huang
    • 1
  • Jiefeng Yu
    • 1
  • Yu Wang
    • 2
  • Huanjun Song
    • 1
  • Jingxin Dai
    • 1
  • Chen Chen
    • 1
  • Lianjun Zheng
    • 1
  • Zixing Ye
    • 1
  • Jianhui Cheng
    • 1
  • Jianlong Li
    • 1
  • Wei Chen
    • 3
    • 4
  • Guo Qin Xu
    • 3
    • 4
  • Boon K. Teo
    • 1
    • 5
    Email author
  • Kai Wu
    • 1
    • 4
    Email author
  1. 1.SKLSCUSS, BNLMS, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.School of Chemistry and Chemical EngineeringChongqing UniversityChongqingChina
  3. 3.Department of ChemistryNational University of SingaporeSingaporeSingapore
  4. 4.SPURcSingaporeSingapore
  5. 5.Department of ChemistryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations