Journal of Cluster Science

, Volume 28, Issue 5, pp 2517–2528 | Cite as

Copper Crystallization from Aqueous Solution: Initiation and Evolution of the Polynuclear Clusters

  • Viktor Vargaljuk
  • Sergiy Okovytyy
  • Volodymyr Polonskyy
  • Olga Kramska
  • Anatoly Shchukin
  • Jerzy Leszczynski
Original Paper


The initial steps of copper electrocrystallization process from aqueous solutions have been studied at DFT level of theory. It has been shown that Cu(H2O) unit is the final product of Cu2+-ions electroreduction. From this particle clusters Cun·aq are formed and grow. Aggregation of copper atoms to the Cun·aq clusters consists of two steps. The first step includes condensation of Cu(H2O) units to hydrated clusters Cun(H2O)n (n = 2–6). At the second step bonding of Cu(H2O) particles is accompanied by dehydration of clusters yielding Cun(H2O)m structures (n > m). Cluster Cu7·aq has been singled out as key structure based on calculated values of energies and Cu–Cu bond distances of Cun·aq clusters. This cluster is of D5h symmetry which is typical for copper microcrystals formed from aqueous solutions in electrocrystallization processes on foreign surface. This key particle could be considered as a critical nucleus. Number of copper atoms therein matches average dimension of critical nucleus.


Hydrated copper clusters Cun(H2O)m Electrocrystallization Density functional theory Galvanostatic transient method Critical nucleus 



This work has been supported by the NSF CREST Interdisciplinary Center for Nanotoxicity, Grant #HRD-0833178. Extreme Science and Engineering Discovery Environment (XSEDE) [34] have been used, which is supported by National Science Foundation Grant Number ACI-1053575.


  1. 1.
    C. P. Poole Jr. and F. J. Owens Introduction to Nanotechnology (Wiley, New York, 2003).Google Scholar
  2. 2.
    H. Gleiter (2000). Acta Mater. 48, 1.CrossRefGoogle Scholar
  3. 3.
    G. Hodes (ed.) Electrochemistry of Nanostructures (Wiley-VCH, Weinheim, 2001).Google Scholar
  4. 4.
    G. Staikov (ed.) Electrocrystallization in Nanotechnology (Wiley-VCH, Weinheim, 2007).Google Scholar
  5. 5.
    V. A. Seredyuk and V. F. Vargalyuk (2008). Russ. J. Electrochem. 44, 1105.CrossRefGoogle Scholar
  6. 6.
    A. V. Matveev, K. M. Neyman, G. Pacchioni, and N. Rosch (1999). Chem. Phys. Lett. 299, 603–612.CrossRefGoogle Scholar
  7. 7.
    E. M. Fernández, J. M. Soler, L. Garzón, and L. C. Balbás (2004). Phys. Rev. B 70, 165403.CrossRefGoogle Scholar
  8. 8.
    F. Aguilera-Granja, M. B. Torres, A. Vega, and L. C. Balbás (2012). J. Phys. Chem. A 116, 9353.CrossRefGoogle Scholar
  9. 9.
    P. B. Balbuena, P. A. Derosa, and J. M. Semenario (1999). J. Phys. Chem. B 103, 2830.CrossRefGoogle Scholar
  10. 10.
    K. Jug, B. Zimmermann, P. Calaminici, and A. M. Köster (2002). J. Chem. Phys. 116, 4497.CrossRefGoogle Scholar
  11. 11.
    P. Jaque and A. Toro-Labbé (2002). J. Chem. Phys. 117, 3208.CrossRefGoogle Scholar
  12. 12.
    G. Guzman-Ramirez, F. Aguilera-Granja, and J. Robles (2010). Eur. Phys. J. D 57, 49.CrossRefGoogle Scholar
  13. 13.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  14. 14.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.CrossRefGoogle Scholar
  15. 15.
    S. Miertuš, E. Scrocco, and J. Tomasi (1981). J. Chem. Phys. 55, 117.Google Scholar
  16. 16.
    V. Barone, M. Cossi, and J. Tomasi (1998). J. Comput. Chem. 19, 404.CrossRefGoogle Scholar
  17. 17.
    A. J. H. Wachters (1970). J. Chem. Phys. 52, 1033.CrossRefGoogle Scholar
  18. 18.
    A. D. McLean and G. S. Chandler (1980). J. Chem. Phys. 72, 5639.CrossRefGoogle Scholar
  19. 19.
    K. Raghavachari, J. S. Binkley, R. Seeger, and J. A. Pople (1980). J. Chem. Phys. 72, 650.CrossRefGoogle Scholar
  20. 20.
    M. J. Frisch, J. A. Pople, and J. S. Binkley (1984). J. Chem. Phys. 80, 3265.CrossRefGoogle Scholar
  21. 21.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford, 2001).Google Scholar
  22. 22.
    S. Grimme, S. Ehrlich, and L. Goerigk (2011). J. Comput. Chem. 32, 1456.CrossRefGoogle Scholar
  23. 23.
    R. F. W. Bader Atoms in Molecules: A Quantum Theory (Clarendon Press, Oxford, 1990).Google Scholar
  24. 24.
    T. Lu and F. Chen (2012). J. Comput. Chem. 33, 580.CrossRefGoogle Scholar
  25. 25.
    E. Espinosa, E. Molins, and C. Lecomte (1998). Chem. Phys. Lett. 285, 170.CrossRefGoogle Scholar
  26. 26.
    N. Karaush, G. Baryshnikov, V. Minaeva, and B. Minaev (2015). N. J. Chem. doi: 10.1039/C5NJ01255D.Google Scholar
  27. 27.
    N. Gutsov (1964). Izvestiya instituta fizikokhimiya B”lgarii AN 4, 69.Google Scholar
  28. 28.
    Yu. M. Polukarov, in Fizicheskaya khimiya. Sovremennye problem [Physical Chemistry. Modern Issues], ed. By Yu. M. Polukarov (Chemistry, Moscow, 1985), pp. 107–137.Google Scholar
  29. 29.
    A. A. Vikarchuk, A. P. Volenko, Yu D Gamburg, and V. I. Skidanenko (2005). Russ. J. Electrochem. 41, 996.CrossRefGoogle Scholar
  30. 30.
    C. Kittel Introduction to Solid State Physics (Wiley, Hoboken, 2005), p. 624.Google Scholar
  31. 31.
    A. A. Vikarchuk and A. P. Volenko (2004). Phys. Solid State 47, 352.CrossRefGoogle Scholar
  32. 32.
    K. Vetter Electrochemical Kinetics: Theoretical Aspects (Academic Press, New York, 1967).Google Scholar
  33. 33.
    N. Yurchenko and V. Trofimenko (2008). ECS Trans. 6, 43.CrossRefGoogle Scholar
  34. 34.
    J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr (2014). Comput. Sci. Eng. 16, 62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Viktor Vargaljuk
    • 1
  • Sergiy Okovytyy
    • 1
  • Volodymyr Polonskyy
    • 1
  • Olga Kramska
    • 1
  • Anatoly Shchukin
    • 1
  • Jerzy Leszczynski
    • 2
  1. 1.Oles Honchar Dnipropetrovsk National UniversityDnepropetrovskUkraine
  2. 2.Interdisciplinary Center for NanotoxicityJackson State UniversityJacksonUSA

Personalised recommendations