Advertisement

Journal of Cluster Science

, Volume 28, Issue 4, pp 1775–1802 | Cite as

Bacilli as Biological Nano-factories Intended for Synthesis of Silver Nanoparticles and Its Application in Human Welfare

  • Varish Ahmad
  • Qazi Mohammad Sajid Jamal
  • Arun K. Shukla
  • Javed Alam
  • Ahamad Imran
  • Usama Mohamed Abaza
Review Paper

Abstract

The search of eco-friendly technologies for nano-synthesis is significant to expand their applications in human welfare. Nowadays, various inorganic nanoparticles with beneficial features have been synthesized via physical, chemical, and biological means. Significant biological applications of silver nanoparticles include on-infectious microbes, target drug delivery, cancer and vector-borne disease control. Their syntheses have been tested from plant fungi, bacteria, and viruses. The bacterial mediated synthesis of silver, gold, zinc and other metal leads to a milestone in nano-medicines. Thus, in this review, we focus on the contribution of Bacilli in the synthesis of silver nanoparticles, the mechanism of action and their potential application in the welfare of human beings.

Keywords

Bacillus Silver nanoparticles Synthesis Biomedical applications 

Notes

Acknowledgement

Authors are thankful to the Deanship of Scientific Research at King Saud University for its funding through the Research Group Project No. RG-1437-030.

References

  1. 1.
    G. Benelli (2016). Enzyme Microb. Technol. 95, 58.CrossRefGoogle Scholar
  2. 2.
    K. B. Narayanan and N. Sakthivel (2010). Adv. Colloid Interface Sci. 156, 1.CrossRefGoogle Scholar
  3. 3.
    K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh (2010). Nanomed. Nanotechnol. Biol. Med. 6, 257.CrossRefGoogle Scholar
  4. 4.
    Y. L. Lyubchenko and L. S. Shlyakhtenko (1997). Proc. Natl. Acad. Sci. USA 94, 496.CrossRefGoogle Scholar
  5. 5.
    E. Wagner, C. Plank, K. Zatloukal, M. Cotten, and M. L. Birnstiel (1992). Proc. Natl. Acad. Sci. USA 89, 7934.CrossRefGoogle Scholar
  6. 6.
    A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. Mccormick, and R. R. Alfano (2003). IEEE J. Sel. Top. Quantum Electron. 9, 277.CrossRefGoogle Scholar
  7. 7.
    V. J. Mohanraj and Y. Chen (2006). Trop. J. Pharm. Res. 5, 561.Google Scholar
  8. 8.
    S. U. Ganaie, T. Abbasi, and S. A. Abbasi (2015). Part. Sci. Technol. 33, 638.CrossRefGoogle Scholar
  9. 9.
    S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, 17.CrossRefGoogle Scholar
  10. 10.
    V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Adv. Colloid Interface Sci. 145, 83.CrossRefGoogle Scholar
  11. 11.
    R. Rajan, K. Chandran, S. L. Harper, S. Il Yun, and P. T. Kalaichelvan (2015). Ind. Crops Prod. 70, 356.CrossRefGoogle Scholar
  12. 12.
    G. Benelli (2016). Parasitol. Res. 115, 23.CrossRefGoogle Scholar
  13. 13.
    S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu (2007). Mater. Lett. 61, 3984.CrossRefGoogle Scholar
  14. 14.
    X. Li, H. Xu, Z. S. Chen, and G. Chen (2011). J. Nanomater.. doi: 10.1155/2011/270974.Google Scholar
  15. 15.
    S. Stankic, S. Suman, F. Haque, and J. Vidic (2016). J. Nanobiotechnology 14, 73.CrossRefGoogle Scholar
  16. 16.
    M. Kujda, M. Ocwieja, Z. Adamczyk, O. Bochenska, G. Bras, A. Kozik, E. Bielanska, and J. Barbasz (2015). J. Nanosci. Nanotechnol. 15, 3574.CrossRefGoogle Scholar
  17. 17.
    M. Guzman, J. Dille, and S. Godet (2012). Nanomed. Nanotechnol. Biol. Med. 8, 37.CrossRefGoogle Scholar
  18. 18.
    M. Gajbhiye, J. Kesharwani, A. Ingle, A. Gade, and M. Rai (2009). Nanomed. Nanotechnol. Biol. Med. 5, 382.CrossRefGoogle Scholar
  19. 19.
    M. L. Frankel, M. A. Demeter, J. A. Lemire, and R. J. Turner (2016). PLoS ONE 11, 1.CrossRefGoogle Scholar
  20. 20.
    T. Klaus, R. Joerger, and E. Olsson (1999). PNAS 96, 13611.CrossRefGoogle Scholar
  21. 21.
    M. Schlüter, T. Hentzel, C. Suarez, M. Koch, W. G. Lorenz, L. Böhm, R. A. Düring, K. A. Koinig, and M. Bunge (2014). Chemosphere 117, 462.CrossRefGoogle Scholar
  22. 22.
    C. Maruthi, K. Kumar, and P. Yugandhar (2016). J. Intercult. Ethnopharmacol. 5, 79.CrossRefGoogle Scholar
  23. 23.
    P. Premasudha, M. Venkataramana, M. Abirami, P. Vanathi, K. Krishna, and R. Rajendran (2015). Bull. Mater. Sci. 38, 965.CrossRefGoogle Scholar
  24. 24.
    R. Singh, U. U. Shedbalkar, S. A. Wadhwani, and B. A. Chopade (2015). Appl. Microbiol. Biotechnol. 99, 4579.CrossRefGoogle Scholar
  25. 25.
    M. Bawskar, S. Deshmukh, S. Bansod, A. Gade, and M. Rai (2015). IET Nanobiotechnol. 9, 107.CrossRefGoogle Scholar
  26. 26.
    S. Sarangadharan and S. Nallusamy (2015). Int. J. Pharma Med. Biol. Sci. 4, 236.Google Scholar
  27. 27.
    V. Gopinath, S. Priyadarshini, M. F. Loke, J. Arunkumar, E. Marsili, D. MubarakAli, P. Velusamy, and J. Vadivelu (2015). Arab. J. Chem. doi: 10.1016/j.arabjc.2015.11.011.
  28. 28.
    H. Zhang, Q. Li, Y. Lu, D. Sun, X. Lin, and X. Deng (2005). J. Chem. Technol. Biotechnol. 80, 285.CrossRefGoogle Scholar
  29. 29.
    B. Nair and T. Pradeep (2002). Cryst. Growth Des. 2, 293.CrossRefGoogle Scholar
  30. 30.
    L. Sintubin, W. De Windt, J. Dick, and J. Mast (2009). Appl. Microbiol. Biotechnol. 84, 741.CrossRefGoogle Scholar
  31. 31.
    K. Kalishwaralal, V. Deepak, S. Ramkumarpandian, H. Nellaiah, and G. Sangiliyandi (2008). Mater. Lett. 62, 4411.CrossRefGoogle Scholar
  32. 32.
    A. R. Shahverdi, S. Minaeian, H. R. Shahverdi, H. Jamalifar, and A. A. Nohi (2007). Process Biochem. 42, 919.CrossRefGoogle Scholar
  33. 33.
    S. Gurunathan, K. Kalishwaralal, R. Vaidyanathan, N. Hariharan, and S. Hyun (2009). Colloids Surf. B Biointerfaces 74, 328.CrossRefGoogle Scholar
  34. 34.
    V. R. Murty (2010). Dig. J. Nanomater. Biostruct. 5, 135.Google Scholar
  35. 35.
    S. Reddy, C.-Y. Chen, C.-C. Chen, J.-S. Jean, H.-R. Chen, M.-J. Tseng, C.-W. Fan, and J.-C. Wang (2010). J. Nanosci. Nanotechnol. 10, 6567.CrossRefGoogle Scholar
  36. 36.
    K. Kalishwaralal, V. Deepak, S. Ram, K. Pandian, M. Kottaisamy, S. Barathmanikanth, B. Kartikeyan, and S. Gurunathan (2010). Colloids Surf. B Biointerfaces 77, 257.CrossRefGoogle Scholar
  37. 37.
    A. Hosseini-Abari, G. Emtiazi, and S. M. Ghasemi (2013). World J. Microbiol. Biotechnol. 29, 2359.CrossRefGoogle Scholar
  38. 38.
    A. M. Fayaz, M. Girilal, M. Rahman, R. Venkatesan, and P. T. Kalaichelvan (2011). Process Biochem. 46, 1958.CrossRefGoogle Scholar
  39. 39.
    R. R. Sr and S. Ty (2012). Asian Pac. J. Trop. Dis. 2, 796.Google Scholar
  40. 40.
    S. Sunkar and C. V. Nachiyar (2012). Asian Pac. J. Trop. Biomed. 2, 953.Google Scholar
  41. 41.
    V. Thamilselvi and K. V. Radha (2013). Dig. J. Nanomater. Biostructures 8, 1101.Google Scholar
  42. 42.
    C. Haefeli, C. Franklint, K. Hardy, S. A. Biogen, and R. Acacias (1984). J. Bacteriol. 158, 389.Google Scholar
  43. 43.
    P. Manivasagan, J. Venkatesan, K. Senthilkumar, K. Sivakumar, and S. Kim (2013). Biomed. Res. Int. doi: 10.1155/2013/287638.
  44. 44.
    E. K. F. Elbeshehy, A. M. Elazzazy, and G. Aggelis (2015). Front. Microbiol. 6, 1.CrossRefGoogle Scholar
  45. 45.
    V. Ahmad, M. S. Khan, Q. M. S. Jamal, M. A. Alzohairy, M. A. Al Karaawi, and M. U. Siddiqui (2016). Int. J. Antimicrob. Agents. doi: 10.1016/j.ijantimicag.2016.08.016.
  46. 46.
    K. Kalimuthu, R. S. Babu, D. Venkataraman, M. Bilal, and S. Gurunathan (2008). Colloids Surf. B Biointerfaces 65, 150.CrossRefGoogle Scholar
  47. 47.
    S. Shanthi, B. David Jayaseelan, P. Velusamy, S. Vijayakumar, C. T. Chih, and B. Vaseeharan (2016). Microb. Pathog. 93, 70.Google Scholar
  48. 48.
    M. I. Sriram, K. Kalishwaralal, and S. Gurunathan, Nanoparticles in Biology and Medicine Methods and Protocols, ed. by Mikhail Soloviev, (Springer, New York, 2012), p. 33.Google Scholar
  49. 49.
    D. Kim, B. J. Yu, J. A. Kim, Y. J. Lee, S. G. Choi, S. Kang, and J. G. Pan (2013). Proteomics 13, 1726.CrossRefGoogle Scholar
  50. 50.
    P. Velmurugan, M. Iydroose, M. H. A. K. Mohideen, T. S. Mohan, M. Cho, and B. T. Oh (2014). Bioprocess Biosyst. Eng. 37, 1527.CrossRefGoogle Scholar
  51. 51.
    G. A. Płaza, J. Chojniak, R. Zbořil, B. Mendrek, P. Bernat, A. Panáček, L. Kvítek, B. Trzebicka, R. Prucek, and K. Paraszkiewicz (2015). IET Nanobiotechnol. 10, 62.Google Scholar
  52. 52.
    D. Jain, S. Kachhwaha, R. Jain, G. Srivastava, and S. L. Kothari (2010). Indian J. Exp. Biol. 48, 1152.Google Scholar
  53. 53.
    A. Najitha Banu, C. Balasubramanian, and P. V. Moorthi (2014). Parasitol. Res. 113, 311.Google Scholar
  54. 54.
    P. Pourali, N. Razavian Zadeh, and B. Yahyaei (2016). Wound Repair Regen. 24, 860.Google Scholar
  55. 55.
    A. N. Banu and C. Balasubramanian (2015). Parasitol. Res. 114, 4069.CrossRefGoogle Scholar
  56. 56.
    D. Paul and S. N. Sinha (2014). Jordan J. Biol. Sci. 7, 245.Google Scholar
  57. 57.
    M. Saravanan, A. K. Vemu, and S. K. Barik (2011). Colloids Surf. B Biointerfaces 88, 325.CrossRefGoogle Scholar
  58. 58.
    P. Singh, H. Singh, Y. J. Kim, R. Mathiyalagan, C. Wang, and D. C. Yang (2016). Enzyme Microb. Technol. 86, 75.CrossRefGoogle Scholar
  59. 59.
    S. A. Ojo, A. Lateef, M. A. Azeez, S. M. Oladejo, A. S. Akinwale, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipupo, E. B. Gueguim-Kana, and L. S. Beukes (2016). IEEE Trans. Nanobiosci. 15, 433.CrossRefGoogle Scholar
  60. 60.
    S. Iravani (2014). Int. Sch. Res. Not. doi: 10.1155/2014/359316.
  61. 61.
    R. R. Ranganathan Nithya (2012). African J. Biotechnol. 11, 11013.Google Scholar
  62. 62.
    L. A. Austin, M. A. MacKey, E. C. Dreaden, and M. A. El-Sayed (2014). Arch. Toxicol. 88, 1391.CrossRefGoogle Scholar
  63. 63.
    M. N. Nadagouda and R. S. Varma (2008). J. Nanomater. 2008. doi: 10.1155/2008/782358.
  64. 64.
    R. Prucek, J. Tuček, M. Kilianová, A. Panáček, L. Kvítek, J. Filip, M. Kolář, K. Tománková, and R. Zbořil (2011). Biomaterials 32, 4704.CrossRefGoogle Scholar
  65. 65.
    S. Marin, G. M. Vlasceanu, R. E. Tiplea, I. R. Bucur, M. Lemnaru, M. M. Marin, and A. M. Grumezescu (2015). Curr. Top. Med. Chem. 15, 1596.CrossRefGoogle Scholar
  66. 66.
    B. K. Bindhani and A. K. Panigrahi (2015). J Nanomed. Nanotechnol. 6. doi: 10.4172/2157-7439.S6-008.
  67. 67.
    H. Cao, X. Liu, F. Meng, and P. K. Chu (2011). Biomaterials 32, 693.CrossRefGoogle Scholar
  68. 68.
    K. John, P. Anthony, M. Murugan, and S. Gurunathan (2014). J. Ind. Eng. Chem. 20, 1505.CrossRefGoogle Scholar
  69. 69.
    X. Hong, J. Wen, X. Xiong, and Y. Hu (2016). Environ. Sci. Pollut. Res. 23, 4489.CrossRefGoogle Scholar
  70. 70.
    K. M. M. Abou El-Nour, A. Eftaiha, A. Al-Warthan, and R. A. A. Ammar (2010). Arab. J. Chem. 3, 135.CrossRefGoogle Scholar
  71. 71.
    K. Mallick, M. J. Witcomb, and M. S. Scurrell (2004). J. Mater. Sci. 39, 4459.CrossRefGoogle Scholar
  72. 72.
    B. G. U. Keerthi and M. Rafi (2015). 3 Biotech 5, 195.Google Scholar
  73. 73.
    J. J. Antony, M. Ali, A. Sithika, T. A. Joseph, U. Suriyakalaa, A. Sankarganesh, D. Siva, S. Kalaiselvi, and S. Achiraman (2013). Colloids Surf. B Biointerfaces 108, 185.CrossRefGoogle Scholar
  74. 74.
    K. Kalimuthu, R. Suresh Babu, D. Venkataraman, M. Bilal, and S. Gurunathan (2008). Colloids Surf. B Biointerfaces 65, 150.Google Scholar
  75. 75.
    N. Pugazhenthiran, S. Anandan, G. Kathiravan, N. K. Udaya Prakash, S. Crawford, and M. Ashokkumar (2009). J. Nanopart. Res. 11, 1811.Google Scholar
  76. 76.
    V. L. Das, R. Thomas, R. T. Varghese, E. V. Soniya, J. Mathew, and E. K. Radhakrishnan (2013). 3 Biotech 4, 121.Google Scholar
  77. 77.
    F. Mirzajani, H. Askari, S. Hamzelou, Y. Schober, A. Römpp, A. Ghassempour, and B. Spengler (2014). Ecotoxicol. Environ. Saf. 100, 122.CrossRefGoogle Scholar
  78. 78.
    H. Tian, Q. Liao, M. Liu, J. Hou, Y. Zhang, and J. Liu (2015). Int. J. Clin. Exp. Med. 8, 5794.Google Scholar
  79. 79.
    L. Sintubin, W. Verstraete, and N. Boon (2012). Biotechnol. Bioeng. 109, 2422.CrossRefGoogle Scholar
  80. 80.
    H. Korbekandi, S. Iravani, and S. Abbasi (2012). J. Chem. Technol. Biotechnol. 87, 932.CrossRefGoogle Scholar
  81. 81.
    P. Kuppusamy, M. M. Yusoff, G. P. Maniam, and N. Govindan (2014). Saudi Pharm. J. 24, 473.CrossRefGoogle Scholar
  82. 82.
    P. Singh, Y. J. Kim, D. Zhang, and D. C. Yang (2016). Trends Biotechnol. 34, 588.CrossRefGoogle Scholar
  83. 83.
    S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry (2004). J. Colloid Interface Sci. 275, 496.CrossRefGoogle Scholar
  84. 84.
    B. Buszewski, V. Railean-Plugaru, P. Pomastowski, K. Rafińska, M. Szultka-Mlynska, P. Golinska, M. Wypij, D. Laskowski, and H. Dahm (2016). J. Microbiol. Immunol. Infect. 1.doi: 10.1016/j.jmii.2016.03.002.
  85. 85.
    M. Roni, K. Murugan, C. Panneerselvam, J. Subramaniam, M. Nicoletti, P. Madhiyazhagan, D. Dinesh, U. Suresh, H. F. Khater, H. Wei, A. Canale, A. A. Alarfaj, M. A. Munusamy, A. Higuchi, and G. Benelli (2015). Ecotoxicol. Environ. Saf. 121, 31.CrossRefGoogle Scholar
  86. 86.
    C. Wang, P. Singh, Y. J. Kim, R. Mathiyalagan, D. Myagmarjav, D. Wang, C.-G. Jin, and D. C. Yang (2016). Artif Cells Nanomed. Biotechnol. 44, 1714.CrossRefGoogle Scholar
  87. 87.
    S. D. Patil, R. Sharma, T. Bhattacharyya, P. Kumar, M. Gupta, B. S. Chaddha, N. K. Navani, and R. Pathania (2015). J. Microbiol. 53, 643.CrossRefGoogle Scholar
  88. 88.
    A. Hosseini-Abari, G. Emtiazi, S. H. Lee, B. G. Kim, and J. H. Kim (2014). Appl. Biochem. Biotechnol. 174, 270.CrossRefGoogle Scholar
  89. 89.
    R. Singh, L. U. Nawale, M. Arkile, U. U. Shedbalkar, S. A. Wadhwani, D. Sarkar, and B. A. Chopade (2015). Int. J. Antimicrob. Agents 46, 183.CrossRefGoogle Scholar
  90. 90.
    X. F. Zhang, J. H. Park, Y. J. Choi, M. H. Kang, S. Gurunathan, and J. H. Kim (2015). Int. J. Nanomed. 10, 7057.Google Scholar
  91. 91.
    D. Dinesh, K. Murugan, P. Madhiyazhagan, C. Panneerselvam, P. Mahesh Kumar, M. Nicoletti, W. Jiang, G. Benelli, B. Chandramohan, and U. Suresh (2015). Parasitol Res. 114, 1519.CrossRefGoogle Scholar
  92. 92.
    D. Kovács, K. Szoke, N. Igaz, G. Spengler, J. Molnár, T. Tóth, D. Madarász, Z. Rázga, Z. Kónya, I. M. Boros, and M. Kiricsi (2016). Nanomed. Nanotechnol. Biol. Med. 12, 601.CrossRefGoogle Scholar
  93. 93.
    C. Wang, Y. J. Kim, P. Singh, R. Mathiyalagan, Y. Jin, and D. C. Yang (2016). Artif Cells Nanomed. Biotechnol. 44, 1714.CrossRefGoogle Scholar
  94. 94.
    S. Amin and A. Mousavi (2015). Iran. J. Med. Sci. 40, 501.Google Scholar
  95. 95.
    C. Krishnaraj, S. L. Harper, H. S. Choe, K. P. Kim, and S. Il Yun (2015). Bioprocess Biosyst. Eng. 38, 1943.CrossRefGoogle Scholar
  96. 96.
    R. Emmanuel, S. Palanisamy, S.-M. Chen, K. Chelladurai, S. Padmavathy, M. Saravanan, P. Prakash, M. Ajmal Ali, and F. M. A. Al-Hemaid (2015). Mater. Sci. Eng. C 56, 374.CrossRefGoogle Scholar
  97. 97.
    N. Anasane, P. Golińska, M. Wypij, D. Rathod, H. Dahm, and M. Rai (2016). Mycoses 59, 157.CrossRefGoogle Scholar
  98. 98.
    J. Junevi, J. Žilinskas, K. Č, and D. Gleiznys (2015). Stomatol. Balt. Dent. Maxillofac. J. 17, 9.Google Scholar
  99. 99.
    Z. U. H. Khan, A. Khan, A. Shah, Y. Chen, P. Wan, A. U. Khan, K. Tahir, N. Muhamma, F. U. Khan, and H. U. Shah (2016). J. Photochem. Photobiol. B Biol. 156, 100.CrossRefGoogle Scholar
  100. 100.
    P. Gopinath, S. K. Gogoi, and A. Chattopadhyay (2008). Nanotechnology 19, 75104.CrossRefGoogle Scholar
  101. 101.
    Y. Kuthati, R. K. Kankala, S.-X. Lin, C.-F. Weng, and C.-H. Lee (2015). Mol. Pharm. 12, 2289.CrossRefGoogle Scholar
  102. 102.
    V. Sujitha, K. Murugan, M. Paulpandi, C. Panneerselvam, U. Suresh, M. Roni, M. Nicoletti, A. Higuchi, P. Madhiyazhagan, J. Subramaniam, D. Dinesh, C. Vadivalagan, B. Chandramohan, A. A. Alarfaj, M. A. Munusamy, D. R. Barnard, and G. Benelli (2015). Parasitol. Res. 114, 3315.CrossRefGoogle Scholar
  103. 103.
    A. J. Thorley and T. D. Tetley (2013). Pharmacol. Ther. 140, 176.CrossRefGoogle Scholar
  104. 104.
    C. K. Venil, P. Sathishkumar, M. Malathi, R. Usha, R. Jayakumar, A. R. M. Yusoff, and W. A. Ahmad (2016). Mater. Sci. Eng. C 59, 228.CrossRefGoogle Scholar
  105. 105.
    S. Gurunathan, J. H. Park, J. W. Han, and J. H. Kim (2015). Int. J. Nanomed. 10, 4203.CrossRefGoogle Scholar
  106. 106.
    P. V. Asharani, G. Low, K. Mun, M. P. Hande, and S. Valiyaveettil (2009). ACS Nano 3, 279.CrossRefGoogle Scholar
  107. 107.
    H. J. Wang, L. Yang, H. Y. Yang, K. Wang, W. G. Yao, K. Jiang, X. L. Huang, and Z. Zheng (2010). J. Inorg. Biochem. 104, 87.CrossRefGoogle Scholar
  108. 108.
    S. C. Boca, M. Potara, A. M. Gabudean, A. Juhem, P. L. Baldeck, and S. Astilean (2011). Cancer Lett. 311, 131.CrossRefGoogle Scholar
  109. 109.
    D. Guo, L. Zhu, Z. Huang, H. Zhou, Y. Ge, W. Ma, J. Wu, X. Zhang, X. Zhou, Y. Zhang, Y. Zhao, and N. Gu (2013). Biomaterials 34, 7884.CrossRefGoogle Scholar
  110. 110.
    S. Gurunathan, J. W. Han, V. Eppakayala, M. Jeyaraj, and J. H. Kim (2013). Biomed. Res. Int.. doi: 10.1155/2013/535796.Google Scholar
  111. 111.
    C. N. Banti and S. K. Hadjikakou (2013). Metallomics 5, 569.CrossRefGoogle Scholar
  112. 112.
    L. Actis, A. Srinivasan, J. L. Lopez-Ribot, A. K. Ramasubramanian, and J. L. Ong (2015). J. Mater. Sci. Mater. Med. 26, 1.CrossRefGoogle Scholar
  113. 113.
    E. D. Cavassin, L. F. P. de Figueiredo, J. P. Otoch, M. M. Seckler, R. A. de Oliveira, F. F. Franco, V. S. Marangoni, V. Zucolotto, A. S. S. Levin, and S. F. Costa (2015). J. Nanobiotechnol. 13, 64.CrossRefGoogle Scholar
  114. 114.
    D. McShan, Y. Zhang, H. Deng, P. C. Ray, and H. Yu (2015). J. Environ. Sci. Heal. Part C 33, 369.CrossRefGoogle Scholar
  115. 115.
    D. Sun, W. Zhang, N. Li, Z. Zhao, Z. Mou, E. Yang, and W. Wang (2016). Mater. Sci. Eng. C 63, 522.CrossRefGoogle Scholar
  116. 116.
    J. Sekuła, J. Nizioł, W. Rode, and T. Ruman (2015). Analyst 140, 6195.CrossRefGoogle Scholar
  117. 117.
    X. F. Zhang, Y. J. Choi, J. W. Han, E. Kim, J. H. Park, S. Gurunathan, and J. H. Kim (2015). Int. J. Nanomed. 10, 1335.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Varish Ahmad
    • 1
  • Qazi Mohammad Sajid Jamal
    • 2
  • Arun K. Shukla
    • 3
  • Javed Alam
    • 3
  • Ahamad Imran
    • 3
  • Usama Mohamed Abaza
    • 3
  1. 1.Nanomedicine and Nanobiotechnology Lab, Department of BiosciencesIntegral UniversityLucknowIndia
  2. 2.Department of Health Information Management, College of Applied Medical SciencesBuraydah CollegesAl QassimSaudi Arabia
  3. 3.King Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations