Advertisement

Journal of Cluster Science

, Volume 28, Issue 3, pp 1647–1665 | Cite as

Application of Gold(III) Acetate as a New Precursor for the Synthesis of Gold Nanoparticles in PEG Through Ultrasonic Spray Pyrolysis

  • Mohammed Shariq
  • Peter Majerič
  • Bernd Friedrich
  • Bojan Budic
  • Darja Jenko
  • Amit Rai Dixit
  • Rebeka Rudolf
Original Paper

Abstract

The present investigation reports the first-time successful synthesis of AuNPs using a new precursor salt of Au(III) acetate through USP. An aqueous solution of this salt was prepared with very limited solubility with H2O. HCl and HNO3 were then added separately to increase the solubility, resulting in a clear, yellowish solution. This enabled the successful formation of AuNPs with USP. In order to improve AuNPs synthesis, NaOH and Na2CO3 were added into the precursor to increase its pH (6–7). With such approach, it was possible to perform USP synthesis using varying concentrations of [Au] in the precursor. Evaporation and reaction temperatures (100 and 300 °C) of USP were chosen based on detected decomposition temperatures of Au(III) acetate with TGA-DT. TEM confirmed the presence of circular shaped, unagglomerated AuNPs having an Fm-3m space group with diameter range of 15–30 and circularity value range of 0.89–0.92. The UV–Vis spectroscopy showed absorbance peaks at 528 and 532 nm. ICP-MS indicated the highest concentration of AuNPs, 79 ppm, by the precursor with the lower initial concentration of [Au]. This could be due to the smallest sedimentation and turbulent losses of larger AuNPs in transport tubes and reaction USP zones.

Keywords

Au(III) acetate Ultrasonic spray pyrolysis Gold nanoparticles Insolubility Circular Unagglomerated 

Abbreviations

AuNPs

Gold nanoparticles

USP

Ultrasonic spray pyrolysis

Au(III) acetate

Gold(III) acetate

TGA-DT

Thermal gravimetric analysis—differential thermal

MOx

Metal oxide powder

TEM

Transmission electron microscopy

UV–Vis

Ultraviolet visible

SPR

Surface plasmon resonance

PEG

Polyethylene glycol

PVP

Polyvinylpyrrolidone

BSA

Bovine serum albumin

wt%

Weight percent

RES

Reticuloendothelial system

EDX

Energy-dispersive X-ray spectroscopy

DLS

Dynamic light scattering

FCC

Face centered cubic

ICP-OES

Optical emission spectroscopy with inductively coupled plasma mass

FTIR

Fourier transform infrared spectroscopy

SD

Standard deviation

fg

Femto gram (10−15)

Notes

Acknowledgements

The study was supported by the European Union—Erasmus Mundus Action 2 Lot 13 Euphrates Program and Slovenian Research Agency ARRS Slovenia (P2-120 and Martina Program). Many thanks to Dr.Vanja Kokol, Dr. Irena Ban and Mrs. Vera Vivod for helping in the UV–Vis spectroscopy, TGA and FTIR analysis.

Compliance with Ethical Standards

Conflict of interest

All the authors declared that there is no conflict of interest.

References

  1. 1.
    B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán (2009). Nano Today 4, (3), 244–251.CrossRefGoogle Scholar
  2. 2.
    K. M. Mayer and J. H. Hafner (2011). Chemical Reviews 111, (6), 3828–3857.CrossRefGoogle Scholar
  3. 3.
    K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello (2012). Chemical Reviews 112, (5), 2739–2779.CrossRefGoogle Scholar
  4. 4.
    J. Z. Zhang Optical Properties and Spectroscopy of Nanomaterials, 1st ed (World Scientific Publishing Company, Singapore, 2009).CrossRefGoogle Scholar
  5. 5.
    P. Alivisatos (2004). Nature Biotechnology 22, 47–52.CrossRefGoogle Scholar
  6. 6.
    J. L. West and N. J. Halas (2000). Current Opinion in Biotechnology 11, 215–217.CrossRefGoogle Scholar
  7. 7.
    I. K. Ding, J. Zhu, W. Cai, et al. (2011). Advanced Energy Materials 1, (1), 52–57.CrossRefGoogle Scholar
  8. 8.
    D. Wu, X. Xu, and X. Liu (2008). The Journal of Chemical Physics 129, 074313.CrossRefGoogle Scholar
  9. 9.
    A. Lahde, I. Koshevoy, T. Karhunen, T. Torvela, T. A. Pakkanen, and J. Jokiniemi (2014). Journal of Nanoparticle Research. doi: 10.1007/s11051-014-2716-4.Google Scholar
  10. 10.
    O. Masala and R. Seshadri (2004). Annual Review of Materials Research 34, 41–81.CrossRefGoogle Scholar
  11. 11.
    M. Brust and C. J. Kiely (2002). Colloids and Surfaces 202, 175–186.CrossRefGoogle Scholar
  12. 12.
    Y. Yin, C. Erdonmez, S. Aloni, and A. P. Alivisatos (2006). Journal of the American Chemical Society 128, 12671–12673.CrossRefGoogle Scholar
  13. 13.
    N. Bao, L. Shen, Y. Wang, P. Padhan, and A. Gupta (2007). Journal of the American Chemical Society 129, 12374–12375.CrossRefGoogle Scholar
  14. 14.
    H. Hiramatsu and F. E. Osterloh (2004). Chemistry of Materials 16, 2509–2511.CrossRefGoogle Scholar
  15. 15.
    S. Sun, B. C. Murray, D. Weller, L. Folks, and A. Moser (2000). Science 287, 1989–1992.CrossRefGoogle Scholar
  16. 16.
    S. Sun and H. Zeng (2002). Journal of the American Chemical Society 124, 8204–8205.CrossRefGoogle Scholar
  17. 17.
    M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon (1993). Journal of Catalysis 144, 175–192.CrossRefGoogle Scholar
  18. 18.
    S. Ivanova, V. Pitchon, Y. Zimmermann, and C. Petit (2006). Applied Catalysis, A: General 298, 57–64.CrossRefGoogle Scholar
  19. 19.
    M. Bowker, A. Nuhu, and J. Soares (2007). Catalysis Today 122, 245–247.CrossRefGoogle Scholar
  20. 20.
    J. D. Lessard, I. Valsamakis, and M. Flytzani-Stephanopoulos (2012). Chemical Communications 48, 4857–4859.CrossRefGoogle Scholar
  21. 21.
    A. Hugon, N. E. L. Kolli, and C. Louis (2010). Journal of Catalysis 274, 239–250.CrossRefGoogle Scholar
  22. 22.
    X. Lu, H. Y. Tuan, B. A. Korgel, and Y. Xia (2008). Chemistry--A European Journal 14, 1584–1591.CrossRefGoogle Scholar
  23. 23.
    A. Lahde, I. Koshevoy, T. Karhunen, T. Torvela, T. A. Pakkanen, and J. Jokiniemi (2014). Journal of Nanoparticle Research. doi: 10.1007/s1105101427164.Google Scholar
  24. 24.
    M. Garza, I. López, and I. Gómez (2013). Advances in Materials Science and Engineering 916908, 1–5.CrossRefGoogle Scholar
  25. 25.
    S. D. Bakrania, G. K. Rathore, and M. S. Wooldridge (2009). Journal of Thermal Analysis and Calorimetry 95, (1), 117–122.CrossRefGoogle Scholar
  26. 26.
    H. Sakurai, K. Koga, Y. Iizuka, and M. Kiuchia (2013). Applied Catalysis, A: General 462–463, 236–246.CrossRefGoogle Scholar
  27. 27.
    M. T. Htay, Y. Hashimoto, N. Momose, and K. Ito (2009). Journal of Crystal Growth 311, (20), 4499–4504.CrossRefGoogle Scholar
  28. 28.
    M. A. Montero, M. R. G. Chialvo, and A. C. Chialvo (2009). Journal of Materials Chemistry 19, (20), 3276–3280.CrossRefGoogle Scholar
  29. 29.
    U. Alver, T. Kılınç, E. Bacaksiz, and S. Nezir (2007). Materials Chemistry and Physics 106, (2–3), 227–230.CrossRefGoogle Scholar
  30. 30.
    H. Zhang and M. T. Swihart (2007). Chemistry of Materials 19, (6), 1290–1301.CrossRefGoogle Scholar
  31. 31.
    S. E. Skrabalak and K. S. Suslick (2005). Journal of the American Chemical Society 127, (28), 9990–9991.CrossRefGoogle Scholar
  32. 32.
    P. Majerič, R. Rudolf, I. Anžel, J. Bogović, S. Stopić, and B. Friedrich (2015). Materials Technology 49, (1), 75–80.Google Scholar
  33. 33.
    D. Mott, et al. (2009). Chemistry of Materials 22, 261–271.CrossRefGoogle Scholar
  34. 34.
    D. Mott, J. Galkowski, L. Wang, J. Luo, and J. C. Zhong (2007). Langmuir 23, 5740–5745.CrossRefGoogle Scholar
  35. 35.
    Z. Xu, C. Shen, Y. Hou, H. Gao, and S. Sun (2009). Chemistry of Materials 21, 1778–1780.CrossRefGoogle Scholar
  36. 36.
    S. D. Bakrania, T. A. Miller, C. Perez, and M. S. Wooldridge (2007). Combustion and Flame 148, 76.CrossRefGoogle Scholar
  37. 37.
    S. D. Bakrania, C. Perez, and M. S. Wooldridge (2007). Proceedings of the Combustion Institute 31, (II), 1797–1804.CrossRefGoogle Scholar
  38. 38.
    L. Mangolini, E. Thimsen, and U. Kortshagen (2005). Nano Letters 5, (4), 655.CrossRefGoogle Scholar
  39. 39.
    E. Thimsen and P. Biswas (2005). AIChE Journal 53, (7), 1727.CrossRefGoogle Scholar
  40. 40.
    E. Thimsen, N. Rastgar, and P. Biswas (2005). Journal of Physical Chemistry 112, (11), 4134.Google Scholar
  41. 41.
    P. Biswas and E. Thimsen Aerosol Measurements, 3rd ed (Wiley-VCH, New York, 2011). (Chapter 33).Google Scholar
  42. 42.
    R. Rudolf, B. Friedrich, S. Stopic, I. Anzel, S. Tomic, and M. Colic (2012). Journal of Biomaterials Applications 26, 595–612.CrossRefGoogle Scholar
  43. 43.
    J. Dokic, R. Rudolf, S. Tomic, S. Stopic, B. Friedrich, B. Budic, I. Anzel, and M. Colic (2012). Journal of Biomedical Nanotechnology 8, 528–538.CrossRefGoogle Scholar
  44. 44.
    M. Afzal, P. K. Butt, and H. Ahmad (1991). Journal of Thermal Analysis 37, 1015.CrossRefGoogle Scholar
  45. 45.
    S. Stopic, R. Rudolf, J. Bogovic, P. Majeric, M. Colic, S. Tomic, M. Jenko, and B. Friedrich (2013). MTAEC9 47, (5), 557–583.Google Scholar
  46. 46.
    S. Stopic, B. Friedrich, H. U. Fritsching, K. Raic, Synthesis of metallic nanosized particles by ultrasonic spray pyrolysis, IME Metallurgische Prozesstechnik and Metallrecycling, RWTH Aachen, Germany, 1st ed (Shaker Verlag, 2015).Google Scholar
  47. 47.
    P. Majeric, D. Jenko, B. Budic, S. Tomic, M. Colic, B. Friedrich, and R. Rudolf (2015). Nanoscience and Nanotechnology Letters 7, 1–10.CrossRefGoogle Scholar
  48. 48.
    P. Majerič, B. Friedrich, and R. Rudolf (2015). Materials Technology 49, (1), 791–796.Google Scholar
  49. 49.
    R. Rudolf, P. Majeric, S. Tomic, M. Shariq, U. Fercec, B. Budic, B. Friedrich, D. Vucevic, M. Colic, Journal of Nanomaterials (2017). doi: 10.1155/2017/9365012.
  50. 50.
    A. Barreto, L. G. Luis, A. V. Girao, T. Trindade, M. Amadeu, V. M. Soares, and M. Oliveira (2015). Journal of Nanoparticle Research. doi: 10.1007/s1105101533020.Google Scholar
  51. 51.
    S. C. Tsai, Y. L. Song, C. S. Tsai, C. C. Yang, W. Y. Chiu, and H. M. Lin (2004). Journal of Materials Science 39, 3647–3657.CrossRefGoogle Scholar
  52. 52.
    T. Niidome, M. Yamagata, Y. Okamoto, et al. (2006). Journal of Controlled Release 114, (3), 343–347.CrossRefGoogle Scholar
  53. 53.
    D. K. Kim, S. J. Park, J. H. Lee, Y. Y. Jeong, and S. Y. Jon (2007). Journal of the American Chemical Society 129, (24), 7661–7665.CrossRefGoogle Scholar
  54. 54.
    C. J. Liu, C. H. Wang, C. C. Chien, et al. (2008). Nanotechnology 19, 29.Google Scholar
  55. 55.
    S. K. Seol, D. Kim, S. Jung, W. S. Chang, and J. T. Kim (2013). Journal of Nanomaterials. doi: 10.1155/2013/531760.Google Scholar
  56. 56.
    B. D. Warheit (2008). Toxicological Sciences 101, 183–185.CrossRefGoogle Scholar
  57. 57.
    L. Canesi, C. Ciacci, R. Fabbri, A. Marcomini, G. Pojana, and G. Gallo (2012). Marine Environment Research 76, 16–21.CrossRefGoogle Scholar
  58. 58.
    A. L. Fernandez, A. Fernandez, and J. Blasco (2012). TrAC Trends in Analytical Chemistry 32, 40–59.CrossRefGoogle Scholar
  59. 59.
    T. B. Lee and F. J. Ranville (2012). Journal of Hazardous Materials 213–214, 434–439.CrossRefGoogle Scholar
  60. 60.
    S. Balog, L. R. Lorenzo, A. C. Monnier, M. R. Obiols, B. R. Rothen, P. Schurtenberger, and A. F. Petri (2015). Nanoscale 7, 5991–5997.CrossRefGoogle Scholar
  61. 61.
    Y. Liu, K. M. Shipton, J. Ryan, D. E. Kaufman, S. Franzen, and L. D. Feldheim (2007). Analytical Chemistry 79, 2221–2229.CrossRefGoogle Scholar
  62. 62.
    V. J. Jokerst, T. Lobovkina, N. R. Zare, and S. S. Gambhir (2011). Nanomedicine 6, 715–728.CrossRefGoogle Scholar
  63. 63.
    J. Manson, D. Kumar, B. Meenan, and D. Dixon (2011). Gold Bulletin 44, 99–105.CrossRefGoogle Scholar
  64. 64.
    L. H. T. Nghiem, T. T. Nguyen, E. Fort, P. T. Nguyen, N. M. T. Hoang, Q. T. Nguyen, and N. H. Tran (2012). Advances in Natural Sciences 3, 015002.Google Scholar
  65. 65.
    C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards (2000). Chemical Society Reviews 29, 27.CrossRefGoogle Scholar
  66. 66.
    H. Bonnemann and R. M. Richards (2001). European Journal of Inorganic Chemistry 1434, 2455–2480.CrossRefGoogle Scholar
  67. 67.
    X. Sun, S. Dong, and E. Wang (2006). Materials Chemistry and Physics 96, 29–33.CrossRefGoogle Scholar
  68. 68.
    N. Srivastava and M. Mukhopadhyay (2015). Journal of Cluster Science. doi: 10.1007/s10876-014-0726-0.Google Scholar
  69. 69.
    N. Saha and S. D. Gupta (2016). Journal of Cluster Science. doi: 10.1007/s10876-016-1009-8.Google Scholar
  70. 70.
    A. Parveen and S. Rao (2015). Journal of Cluster Science. doi: 10.1007/s10876-014-0813-2.Google Scholar
  71. 71.
    T. T. Kodas and M. H. Smith Aerosol Processing of Materials, 1st ed (Wiley-VCH, New York, 1999), pp. 45–74.Google Scholar
  72. 72.
    J. P. Sylvestre, A. V. Kabashin, E. Sacher, and J. H. T. Luong (2004). Journal of the American Chemical Society. doi: 10.1021/ja048678s.Google Scholar
  73. 73.
    G. Cardenas, V. Saez, and C. Cruzat (2015). Journal of Cluster Science. doi: 10.1007/s10876-016-1071-2.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mohammed Shariq
    • 1
    • 2
  • Peter Majerič
    • 1
  • Bernd Friedrich
    • 3
  • Bojan Budic
    • 4
  • Darja Jenko
    • 5
  • Amit Rai Dixit
    • 2
  • Rebeka Rudolf
    • 1
    • 6
  1. 1.Institute of Materials TechnologyUniversity of MariborMariborSlovenia
  2. 2.Indian Institute of Technology (Indian School of Mines)DhanbadIndia
  3. 3.IME InstituteRWTH AachenAachenGermany
  4. 4.National Institute of ChemistryLjubljanaSlovenia
  5. 5.Institute of Metals and TechnologyLjubljanaSlovenia
  6. 6.Zlatarna Celje d.d.CeljeSlovenia

Personalised recommendations