Journal of Cluster Science

, Volume 28, Issue 2, pp 799–812 | Cite as

Synthesis and Characterizations of Keplerate Nanocapsules Incorporating L- and D-Tartrate Ligands

  • Mouhamad Awada
  • Sébastien Floquet
  • Jérôme Marrot
  • Mohamed Haouas
  • Sara P. Morcillo
  • Christophe Bour
  • Vincent Gandon
  • Vincent Coeffard
  • Christine Greck
  • Emmanuel Cadot
Original Paper

Abstract

Five new tartrate-containing Keplerate compounds have been synthesized and characterized in the solid state and in solution. These characterizations evidenced the total replacement of inner sulfate ligands by L- or D-tartrate ligands in aqueous medium under heating during several days. To our knowledge these compounds correspond to the first Keplerate molecules incorporating chiral ligands. The 1H NMR studies supported by X-ray crystallographic analysis are consistent with the coordination of 24–30 tartrates within the Mo132 capsule which are located in close vicinity. The NMR signals of the encapsulated ligands appear particularly broad which precludes the use of advanced NMR methodologies but the solid state NMR provided further characterization of ligand substitution within the capsule by carboxylates. To our knowledge it is the first time that a solid state NMR study of a Keplerate is reported in the literature.

Keywords

Keplerate Hollow molecules Tartaric acid Tartrate Solid state NMR 

References

  1. 1.
    M. Carraro, G. Fiorani, L. Mognon, F. Caneva, M. Gardan, C. Maccato, and M. Bonchio (2012). Chem. Eur. J. 18, (41), 13195–13202.CrossRefGoogle Scholar
  2. 2.
    B. Nohra, H. El Moll, L. M. R. Albelo, P. Mialane, J. Marrot, C. Mellot-Draznieks, M. O’Keeffe, R. N. Biboum, J. Lemaire, B. Keita, L. Nadjo, and A. Dolbecq (2011). J. Am. Chem. Soc. 133, (34), 13363–13374.CrossRefGoogle Scholar
  3. 3.
    M. Barsukova-Stuckart, L. F. Piedra-Garza, B. Gautam, G. Alfaro-Espinoza, N. V. Izarova, A. Banerjee, B. S. Bassil, M. S. Ullrich, H. J. Breunig, C. Silvestru, and U. Kortz (2012). Inorg. Chem. 51, (21), 12015–12022.CrossRefGoogle Scholar
  4. 4.
    G. Charron, A. Giusti, S. Mazerat, P. Mialane, A. Gloter, F. Miserque, B. Keita, L. Nadjo, A. Filoramo, E. Riviere, W. Wernsdorfer, V. Huc, J. P. Bourgoin, and T. Mallah (2010). Nanoscale 2, (1), 139–144.CrossRefGoogle Scholar
  5. 5.
    M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. T. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin (2012). Nat. Chem. 4, (5), 349–354.CrossRefGoogle Scholar
  6. 6.
    D. L. Long, R. Tsunashima, and L. Cronin (2010). Angew. Chem. Int. Ed. 49, (10), 1736–1758.CrossRefGoogle Scholar
  7. 7.
    A. Müller and P. Gouzerh (2012). Chem. Soc. Rev. 41, (22), 7431–7463.CrossRefGoogle Scholar
  8. 8.
    O. Petina, D. Rehder, E. T. K. Haupt, A. Grego, I. A. Weinstock, A. Merca, H. Bögge, J. Szakacs, and A. Müller (2011). Angew. Chem. Int. Ed. 50, (2), 410–414.CrossRefGoogle Scholar
  9. 9.
    A. Ziv, A. Grego, S. Kopilevich, L. Zeiri, P. Miro, C. Bo, A. Müller, and I. A. Weinstock (2009). J. Am. Chem. Soc. 131, (18), 6380.CrossRefGoogle Scholar
  10. 10.
    C. Schäffer, H. Bögge, A. Merca, I. A. Weinstock, D. Rehder, E. T. K. Haupt, and A. Müller (2009). Angew. Chem. Int. Ed. 48, (43), 8051–8056.CrossRefGoogle Scholar
  11. 11.
    A. Merca, E. T. K. Haupt, T. Mitra, H. Bögge, D. Rehder, and A. Müller (2007). Chem. Eur. J. 13, (27), 7650–7658.CrossRefGoogle Scholar
  12. 12.
    A. Müller, Y. S. Zhou, L. J. Zhang, H. Bögge, M. Schmidtmann, M. Dressel, and J. van Slageren (2004). Chem. Commun. 18, 2038–2039.CrossRefGoogle Scholar
  13. 13.
    A. Müller, D. Rehder, E. T. K. Haupt, A. Merca, H. Bögge, M. Schmidtmann, and G. Heinze-Bruckner (2004). Angew. Chem. Int. Ed. 43, (34), 4466–4470.CrossRefGoogle Scholar
  14. 14.
    A. Müller, S. K. Das, S. Talismanov, S. Roy, E. Beckmann, H. Bögge, M. Schmidtmann, A. Merca, A. Berkle, L. Allouche, Y. S. Zhou, and L. J. Zhang (2003). Angew. Chem. Int. Ed. 42, (41), 5039–5044.CrossRefGoogle Scholar
  15. 15.
    S. Garai, M. Rubčić, H. Bögge, P. Gouzerh, and A. Müller (2015). Chem. Eur. J. 21, (11), 4321–4325.CrossRefGoogle Scholar
  16. 16.
    A. Gilles, S. Mihai, G. Nasr, E. Mahon, S. Garai, A. Müller, and M. Barboiu (2013). Isr. J. Chem. 53, (1–2), 102–107.CrossRefGoogle Scholar
  17. 17.
    T.-L. Lai, M. Awada, S. Floquet, C. Roch-Marchal, N. Watfa, J. Marrot, M. Haouas, F. Taulelle, and E. Cadot (2015). Chem. Eur. J. 21, (38), 13311–13320.CrossRefGoogle Scholar
  18. 18.
    S. Kopilevich, A. Müller, and I. A. Weinstock (2015). J. Am. Chem. Soc. 137, (40), 12740–12743.CrossRefGoogle Scholar
  19. 19.
    S. Kopilevich, A. Gil, M. Garcia-Rates, J. Bonet-Avalos, C. Bo, A. Müller, and I. A. Weinstock (2012). J. Am. Chem. Soc. 134, (31), 13082–13088.CrossRefGoogle Scholar
  20. 20.
    A. Rezaeifard, M. Jafarpour, R. Haddad, H. Tavallaei, and M. Hakimi (2015). J. Cluster Sci. 26, (5), 1439–1450.CrossRefGoogle Scholar
  21. 21.
    A. Rezaeifard, R. Haddad, M. Jafarpour, and M. Hakimi (2014). ACS Sustain. Chem. Eng. 2, (4), 942–950.CrossRefGoogle Scholar
  22. 22.
    A. Rezaeifard, R. Haddad, M. Jafarpour, and M. Hakimi (2013). J. Am. Chem. Soc. 135, (27), 10036–10039.CrossRefGoogle Scholar
  23. 23.
    A. A. Ostroushko and K. V. Grzhegorzhevskii (2014). Russ. J. Phys. Chem. A 88, (6), 1008–1011.CrossRefGoogle Scholar
  24. 24.
    Y. S. Zhou, Z. H. Shi, L. J. Zhang, S. ul Hassan, and N. N. Qu (2013). Appl. Phys. A Mater. Sci. Process. 113, (3), 563–568.CrossRefGoogle Scholar
  25. 25.
    L. J. Zhang, Z. H. Shi, L. H. Zhang, Y. S. Zhou, and S. ul Hassan (2012). Mater. Lett. 86, 62–64.CrossRefGoogle Scholar
  26. 26.
    S. Floquet, E. Terazzi, V. S. Korenev, A. Hijazi, L. Guénée, and E. Cadot (2014). Liq. Cryst. 41, (7), 1000–1007.CrossRefGoogle Scholar
  27. 27.
    S. Floquet, E. Terazzi, A. Hijazi, L. Guénée, C. Piguet, and E. Cadot (2012). New J. Chem. 36, (4), 865–868.CrossRefGoogle Scholar
  28. 28.
    N. Watfa, S. Floquet, E. Terazzi, W. Salomon, L. Guénée, K. L. Buchwalder, A. Hijazi, D. Naoufal, C. Piguet, and E. Cadot (2015). Inorganics 3, 246–266.CrossRefGoogle Scholar
  29. 29.
    H. L. Li, Y. Yang, Y. Z. Wang, C. Y. Wang, W. Li, and L. X. Wu (2011). Soft Matter. 7, (6), 2668–2673.CrossRefGoogle Scholar
  30. 30.
    P. C. Yin, D. Li, and T. B. Liu (2012). Chem. Soc. Rev. 41, (22), 7368–7383.CrossRefGoogle Scholar
  31. 31.
    C. Besson, S. Schmitz, K. M. Capella, S. Kopilevich, I. A. Weinstock, and P. Kögerler (2012). Dalton Trans. 41, (33), 9852–9854.CrossRefGoogle Scholar
  32. 32.
    K. Gratzer, G. N. Gururaja, and M. Waser (2013) Eur. J. Org. Chem. 4471–4482.Google Scholar
  33. 33.
    P. D. de María (2010). ChemCatChem 2, 487–492.CrossRefGoogle Scholar
  34. 34.
    H. Tohma, S. Takizawa, H. Watanabe, Y. Fukuoka, T. Maegawa, and Y. Kita (1999). J. Org. Chem. 64, 3519–3523.CrossRefGoogle Scholar
  35. 35.
    Y. Luan, K. S. Barbato, P. N. Moquist, T. Kodama, and S. E. Schaus (2015). J. Am. Chem. Soc. 137, 3233–3236.CrossRefGoogle Scholar
  36. 36.
    P. Czarnecki, A. Plutecka, J. Gawroński, and K. Kacprzak (2011). Green Chem. 13, 1280–1287.CrossRefGoogle Scholar
  37. 37.
    Y. Wang, X. P. Sun, S. Z. Li, P. T. Ma, J. P. Wang, and J. Y. Niu (2015). Dalton Trans. 44, (2), 733–738.CrossRefGoogle Scholar
  38. 38.
    W. W. Ju, H. T. Zhang, X. Xu, Y. Zhang, and Y. Xu (2014). Inorg. Chem. 53, (7), 3269–3271.CrossRefGoogle Scholar
  39. 39.
    S. Yao, Z. M. Zhang, Y. G. Li, Y. Lu, E. B. Wang, and Z. M. Su (2010). Cryst. Growth Des. 10, (1), 135–139.CrossRefGoogle Scholar
  40. 40.
    G. M. Sheldrick SADABS program for scaling and correction of area detector data (University of Göttingen, Göttingen, 1997).Google Scholar
  41. 41.
    R. Blessing (1995). Acta Crystallogr. Sect. A A51, 33.CrossRefGoogle Scholar
  42. 42.
    G. M. Sheldrick (1990). Acta Cryst. A46, 467.CrossRefGoogle Scholar
  43. 43.
    G. M. Sheldrick SHELX-TL Version 5.03, Software Package for the Crystal Structure Determination (Siemens Analytical X-ray Instrument Division, Madison, WI, 1994).Google Scholar
  44. 44.
    A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann, and F. Peters (1998). Angew. Chem. Int. Ed. 37, (24), 3360–3363.CrossRefGoogle Scholar
  45. 45.
    A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann, B. Botar, and M. O. Talismanova (2003). Angew. Chem. Int. Ed. 42, (18), 2085–2090.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mouhamad Awada
    • 1
  • Sébastien Floquet
    • 1
  • Jérôme Marrot
    • 1
  • Mohamed Haouas
    • 1
  • Sara P. Morcillo
    • 2
  • Christophe Bour
    • 2
  • Vincent Gandon
    • 2
  • Vincent Coeffard
    • 1
  • Christine Greck
    • 1
  • Emmanuel Cadot
    • 1
  1. 1.Institut Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint QuentinUniversité Paris-SaclayVersailles CedexFrance
  2. 2.Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Univ. Paris-SudUniversité Paris-SaclayOrsay CedexFrance

Personalised recommendations