Advertisement

Journal of Cluster Science

, Volume 28, Issue 3, pp 1201–1213 | Cite as

Microfluidics based Handheld Nanoparticle Synthesizer

  • S. C. G. Kiruba Daniel
  • Lourdes Albina Nirupa Julius
  • Sai Siva GorthiEmail author
Original Paper
  • 305 Downloads

Abstract

Current study relates to the development of an electrical power-free, handheld microfluidic nanoparticle synthesizer for synthesis of uniform sized silver nanoparticles at room temperature. The synthesizer module consists of a custom designed microreactor and employs negative pressure based pumping mechanism for the electrical power free synthesis of metal nanoparticles. In order to realize a microreactor capable of on-site synthesis of monodisperse nanoparticles, optimization studies by bulk biosynthesis at varying ratios of the precursor and the reducing agent followed by UV–VIS absorption studies were performed to determine the appropriate mixing ratio. Later, a custom designed microfluidic micromixer was used to perform volumetric flow rate optimizations at the desired ratio using syringe pumps. From the knowledge of the precursor and reducing agent ratio and the flow rates, we modified the hydraulic resistance of micro-mixer inlets by varying the channel geometry to meet the optimized specifications leading to effective synthesis. The synthesized nanoparticles were characterized by UV–VIS spectroscopy, XPS, FTIR, EDS, HRTEM and SAED. The crystal lattice planes of [111] and [220] from the SAED pattern confirms the presence of silver nanoparticles. HRTEM study elucidates that the size of the synthesized nanoparticles is between 2 and 10 nm.

Keywords

Microfluidics Nanoparticle synthesizer Silver nanoparticles Biosynthesis 

Notes

Acknowledgements

The authors gratefully acknowledge SPARSH: Social Innovation Programme for Products: Affordable and Relevant to Societal Health project funded by BIRAC-Biotechnology Industry Research Assistance Council for the financial assistance. Authors acknowledge Robert Bosch Centre for Cyber Physical System for their support. Also, the authors thank Mr.JayeshAdhikari for his assistance in designing and 3D printing the nanoparticle synthesizer prototype casing.

Supplementary material

10876_2016_1120_MOESM1_ESM.docx (482 kb)
Supplementary material 1 (DOCX 481 kb)

References

  1. 1.
    K. K. Sandhu, C. M. McIntosh, J. M. Simard, S. W. Smith, and V. M. Rotello (2002). Bioconj. Chem. 13, 6.CrossRefGoogle Scholar
  2. 2.
    Y. C. Cao, R. Jin, and C. A. Mirkin (2002). Science 297, 1536.CrossRefGoogle Scholar
  3. 3.
    A. D. McFarland and R. P. Van Duyne (2003). Nano Lett. 3, 1057.CrossRefGoogle Scholar
  4. 4.
    T. Pradeep, et al. (2009). Thin solid films 517, 6441.CrossRefGoogle Scholar
  5. 5.
    S.C.G Kiruba Daniel, S. Malathi, S. Balasubramanian, M. Sivakumar, and T. A. Sironmani(eds.) in Application of Nanotechnology in Water Researched. By Ajay Kumar Mishra, (Springer, Berlin, 2014), p. 435.Google Scholar
  6. 6.
    D. Sung, A. de la FuenteVornbrock, and V. Subramanian (2010). Compon. Packag. Technol. IEEE Trans. 33, 105.CrossRefGoogle Scholar
  7. 7.
    S. C. G. Kiruba Daniel, N. Mahalakshmi, J. Sandhiya, N. Kasi, and M. Sivakumar (2013). Adv. Mater. Res. 678, 349.CrossRefGoogle Scholar
  8. 8.
    S. Komarneni, D. Li, B. Newalkar, H. Katsuki, and A. S. Bhalla (2002). Langmuir 18, 5959.CrossRefGoogle Scholar
  9. 9.
    T. Adschiri (2007). Chem. Lett. 36, 1188.CrossRefGoogle Scholar
  10. 10.
    H.-J. Jeon, S.-C. Yi, and S.-G. Oh (2003). Biomaterials 24, 4921.CrossRefGoogle Scholar
  11. 11.
    J. Zhu, S. Liu, O. Palchik, Y. Koltypin, and A. Gedanken (2000). Langmuir 16, 6396.CrossRefGoogle Scholar
  12. 12.
    W. Jiang, H. Yang, S. Yang, H. Horng, J. Hung, Y. Chen, and C.-Y. Hong (2004). J. Magn. Magn. Mater. 283, 210.CrossRefGoogle Scholar
  13. 13.
    S. C. G. Kiruba Daniel, K. Nehru, and M. Sivakumar (2012). Curr. Nanosci. 8, 125.CrossRefGoogle Scholar
  14. 14.
    A. Günther and K. F. Jensen (2006). Lab. Chip 6, 1487.CrossRefGoogle Scholar
  15. 15.
    H. Liu, J. Huang, D. Sun, L. Lin, W. Lin, J. Li, X. Jiang, W. Wu, and Q. Li (2012). Chem. Eng. J. 209, 568.CrossRefGoogle Scholar
  16. 16.
    J. Huang, L. Lin, Q. Li, D. Sun, Y. Wang, Y. Lu, N. He, K. Yang, X. Yang, H. Wang, et al. (2008). Ind. Eng. Chem. Res. 47, 6081.CrossRefGoogle Scholar
  17. 17.
    V. Parashar, R. Parashar, B. Sharma, and A. C. Pandey (2009). Dig. J. Nanomater. Biostruct. 4, 45.Google Scholar
  18. 18.
    SU-8, Micro. Chem., 5 (2000).Google Scholar
  19. 19.
    B. Das and R. Das (1995). Allelopath. J. 2, 99.Google Scholar
  20. 20.
    A. R. Abate and D. A. Weitz (2011). Biomicrofluidics 5, 014107.CrossRefGoogle Scholar
  21. 21.
    K. W. Oh, K. Lee, B. Ahn, and E. P. Furlani (2012). Lab. Chip 12, 515.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. C. G. Kiruba Daniel
    • 1
  • Lourdes Albina Nirupa Julius
    • 1
  • Sai Siva Gorthi
    • 1
    • 2
    Email author
  1. 1.Shanmukha Innovations Pvt. LtdBangaloreIndia
  2. 2.Department of Instrumentation and Applied PhysicsIndian Institute of Science (IISc)BangaloreIndia

Personalised recommendations