Journal of Cluster Science

, Volume 28, Issue 3, pp 1071–1081 | Cite as

The Effect of Intermolecular Hydrogen Bonding on the Polyaniline Water Complex

  • Yahong Zhang
  • Yuping Duan
  • Jia Liu
Original Paper


The polyaniline water hydrogen-bonded complex was studied by first-principles calculation. The density functional theory method was used to calculate the structure characters, natural bond orbital charge distribution, infrared spectra and the frontier molecular orbital. Results showed that the H–O···H–N and C–N···H–O type intermolecular hydrogen bonds were formed. The bonds involved in the intermolecular H-bond were all influenced by the hydrogen bonding interaction. During the hydrogen bond formation, the polymer chains in the complexes were all charged, which can be an important factor contributing to the increase of electrical conductivity. The N1–H vibration was strongly influenced, and the locations as well as the intensities of N1–H absorption bands were all changed in the complexes. In the orbital transition of HOMO to LUMO, the electron density transferred from benzenoid ring to quinoid ring.


First-principles DFT Hydrogen bond Electrical conductivity 


  1. 1.
    G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B 111, 8940.CrossRefGoogle Scholar
  2. 2.
    C. F. Matta, J. Hernández-Trujillo, T. H. Tang, and R. F. W. Bader (2003). Chem. Eur. J. 9, 1940.CrossRefGoogle Scholar
  3. 3.
    G. J. Zhao and K. L. Han (2009). J. Phys. Chem. A 113, 14329.CrossRefGoogle Scholar
  4. 4.
    V. Kozlovskaya, O. Zavgorodnya, Y. Chen, K. Ellis, H. M. Tse, W. Cui, J. Anthony Thompson, and E. Kharlampieva (2012). Adv. Funct. Mater. 22, 3389.CrossRefGoogle Scholar
  5. 5.
    L. Guo, H. Sato, T. Hashimoto, and Y. Ozaki (2010). Macromolecules 43, 3897.CrossRefGoogle Scholar
  6. 6.
    D. Yokoyama, H. Sasabe, Y. Furukawa, C. Adachi, and J. Kido (2011). Adv. Funct. Mater. 21, 1375.CrossRefGoogle Scholar
  7. 7.
    M. E. Tessensohn, H. Hirao, and R. D. Webster (2013). J. Phys. Chem. C 117, 1081.CrossRefGoogle Scholar
  8. 8.
    C. V. Mahajan and V. Ganesan (2013). J. Phys. Chem. C 117, 5315.CrossRefGoogle Scholar
  9. 9.
    M. L. Huggins (1922). Science 55, 459.CrossRefGoogle Scholar
  10. 10.
    G. A. Jeffrey An Introduction to Hydrogen Bonding (Oxford University Press, New York, 1997), p. 103.Google Scholar
  11. 11.
    I. Mata, I. Alkorta, E. Molins, and E. Espinosa (2010). Chem. Eur. J. 16, 2442.CrossRefGoogle Scholar
  12. 12.
    J. U. Bowie (2011). Curr. Opin. Struct. Biol. 21, 42.CrossRefGoogle Scholar
  13. 13.
    S. Burattini, B. W. Greenland, D. H. Merino, W. Weng, J. Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley, and S. J. Rowan (2010). J. Am. Chem. Soc. 132, 12051.CrossRefGoogle Scholar
  14. 14.
    K. P. Gierszal, J. G. Davis, M. D. Hands, D. S. Wilcox, L. V. Slipchenko, and D. Ben-Amotz (2011). J. Phys. Chem. Lett. 2, 2930.CrossRefGoogle Scholar
  15. 15.
    A. Wulf, K. Fumino, and R. Ludwig (2010). Angew. Chem. Int. Ed. 49, 449.CrossRefGoogle Scholar
  16. 16.
    L. T. Sin, W. Rahman, A. R. Rahmat, and A. A. Samad (2010). Polymer 51, 1206.CrossRefGoogle Scholar
  17. 17.
    L. F. Scatena, M. G. Brown, and G. L. Richmond (2001). Science 292, 908.CrossRefGoogle Scholar
  18. 18.
    J. F. Quinn and F. Caruso (2006). Adv. Funct. Mater. 16, 1179.CrossRefGoogle Scholar
  19. 19.
    C. Liang and S. Dai (2006). J. Am. Chem. Soc. 128, 5316.CrossRefGoogle Scholar
  20. 20.
    G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 2469.CrossRefGoogle Scholar
  21. 21.
    G. J. Zhao and K. L. Han (2008). Biophys. J. 94, 38.CrossRefGoogle Scholar
  22. 22.
    A. A. Al-Saadi, E. J. Ocola, and J. Laane (2010). J. Phys. Chem. A 114, 7453.CrossRefGoogle Scholar
  23. 23.
    G. J. Zhao and K. L. Han (2011). Acc. Chem. Res. 45, 404.CrossRefGoogle Scholar
  24. 24.
    A. M. Wright, A. A. Howard, J. C. Howard, G. S. Tschumper, and N. I. Hammer (2013). J. Phys. Chem. A 117, 5435.CrossRefGoogle Scholar
  25. 25.
    P. Song and F. C. Ma (2013). Int Rev Phys Chem. 32, 589.CrossRefGoogle Scholar
  26. 26.
    Y. Cui, H. Zhao, J. Zhao, P. Li, P. Song, and L. Xia (2015). New J. Chem. 39, 9910.CrossRefGoogle Scholar
  27. 27.
    M. Tarek and D. J. Tobias (2002). Phys. Rev. Lett. 88, (138101), 1.Google Scholar
  28. 28.
    G. Maes, J. Smets, L. Adamowicz, W. McCarthy, M. K. Van Bael, L. Houben, and K. Schoone (1997). J. Mol. Struct. 410, 315.Google Scholar
  29. 29.
    S. Schlucker, J. Koster, R. K. Singh, and B. P. Asthana (2007). J. Phys. Chem. A 111, 5185.CrossRefGoogle Scholar
  30. 30.
    R. D. Mountain (2010). J. Phys. Chem. B 114, 16460.CrossRefGoogle Scholar
  31. 31.
    J. Smets, W. McCarthy, G. Maes, and L. Adamowicz (1999). J. Mol. Struct. 476, 27.CrossRefGoogle Scholar
  32. 32.
    K. Schoone, J. Smets, R. Ramaekers, L. Houben, L. Adamowicz, and G. Maes (2003). J. Mol. Struct. 649, 61.CrossRefGoogle Scholar
  33. 33.
    N. Gospodinova and E. Tomšík (2015). Prog. Polym. Sci. 43, 33.CrossRefGoogle Scholar
  34. 34.
    M. Nechtschein, C. Santier, J. P. Travers, J. Chroboczek, A. Alix, and M. Ripert (1987). Synth. Met. 18, 311.CrossRefGoogle Scholar
  35. 35.
    E. S. Matveeva (1996). Synth. Met. 79, 127.CrossRefGoogle Scholar
  36. 36.
    J. Y. Shimano and A. G. MacDiarmid (2001). Synth. Met. 123, 251.CrossRefGoogle Scholar
  37. 37.
    O. Omelchenko, E. Tomšík, A. Zhigunov, O. Guskova, O. Gribkova, and N. Gospodinova (2013). Macromol. Chem. Phys. 214, 2739.CrossRefGoogle Scholar
  38. 38.
    J. Casanovas, M. Canales, G. Fabregat, A. Meneguzzi, and C. Alemán (2012). J. Phys. Chem. B 116, 7342.CrossRefGoogle Scholar
  39. 39.
    M. Canales, D. Aradilla, and C. Alemán (2011). J. Polym. Sci. Part B: Polym. Phys. 49, 1322.CrossRefGoogle Scholar
  40. 40.
    J. Romanova, G. Madjarova, A. Tadjer, and N. Gospodinova (2011). Int. J. Quantum Chem. 111, 435.CrossRefGoogle Scholar
  41. 41.
    J. Romanova, J. Petrova, A. Tadjer, and N. Gospodinova (2010). Synth. Met. 160, 1050.CrossRefGoogle Scholar
  42. 42.
    J. Romanova, J. Petrova, A. Ivanova, A. Tadjer, and N. Gospodinova (2010). J. Mol. Struct. Theochem. 954, 36.CrossRefGoogle Scholar
  43. 43.
    H. Zhekova, A. Tadjer, A. Ivanova, J. Petrova, and N. Gospodinova (2007). Int. J. Quantum Chem. 107, 1688.CrossRefGoogle Scholar
  44. 44.
    Y. P. Yurenko, R. O. Zhurakivsky, S. P. Samijlenko, and D. M. Hovorun (2011). J. Biomol. Struct. Dyn. 29, 51.CrossRefGoogle Scholar
  45. 45.
    T. Y. Nikolaienko, L. A. Bulavin, and D. M. Hovorun (2014). Comput. Theor. Chem. 1050, 15.CrossRefGoogle Scholar
  46. 46.
    T. Y. Nikolaienko, L. A. Bulavin, and D. M. Hovorun (2012). Phys. Chem. Chem. Phys. 14, 7441.CrossRefGoogle Scholar
  47. 47.
    A. V. Iogansen (1999). Spectrochim. Acta, Part A 55, 1585.CrossRefGoogle Scholar
  48. 48.
    A. V. Iogansen, B. V. Rassadin, and N. P. Sorokina (1989). Theor. Exp. Chem. 24, 446.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations