Journal of Cluster Science

, Volume 28, Issue 1, pp 149–164 | Cite as

Biomedical Applications of Cocoa Bean Extract-Mediated Silver Nanoparticles as Antimicrobial, Larvicidal and Anticoagulant Agents

  • Musibau A. Azeez
  • Agbaje Lateef
  • Tesleem B. Asafa
  • Taofeek A. Yekeen
  • Akeem Akinboro
  • Iyabo C. Oladipo
  • Evariste B. Gueguim-Kana
  • Lorika S. Beukes
Original Paper

Abstract

In this work, cocoa bean extract (CBE) was used to synthesize silver nanoparticles (AgNPs) under ambient conditions. The fairly polydispersed spherical CBE-AgNPs had size range of 8.96–54.22 nm with λmax occurring at 438.5 nm. The prominent peaks at 3275.13 and 1635.54 cm−1 from FTIR data laid credence to the involvement of phenolics and proteins in the biofabrication and stabilization of CBE-AgNPs. Energy dispersive X-ray and selected area electron diffraction studies showed the conspicuous presence of silver in colloidal solution with distinctive crystalline face-centered cubic phase of AgNPs. CBE-AgNPs showed appreciable activities against multi-drug resistant bacteria, producing zones of inhibition of 10–14 mm, and also enhanced activities of ampicillin, cefuroxime, cefixime and erythromycin by 42.9–100 % in synergistic studies. It produced pronounced antimicrobial activities against several bacteria and fungi, when incorporated into emulsion paint. Furthermore CBE-AgNPs showed good larvicidal activities against Anopheles gambiae mosquito larvae with LC50 of 44.37 µg/ml, while it also prevented the coagulation of human blood. This study established synthesis of AgNPs using CBE as a viable green route approach, with remarkable antimicrobial, larvicidal and anticoagulant activities. As far as we know, this is the first report of the use of CBE to synthesize AgNPs.

Graphical Abstract

Keywords

Cocoa beans Silver nanoparticles Antimicrobial Anticoagulant Larvicidal 

References

  1. 1.
    M. Agharkar, S. Kochrekar, S. Hidouri, and M. A. Azeez (2014). Mater. Res. Bull. 59, 323.CrossRefGoogle Scholar
  2. 2.
    P. Gomez-Romero (2001). Adv. Mater. 13, 163.CrossRefGoogle Scholar
  3. 3.
    A. Lateef, M. A. Azeez, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, L. Azeez, S. E. Ajibade, S. A. Ojo, E. B. Gueguim-Kana, and L. S. Beukes (2016). J. Taibah Univ. Sci. 10, 551.CrossRefGoogle Scholar
  4. 4.
    A. Lateef, M. A. Azeez, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, L. Azeez, S. E. Ajibade, S. A. Ojo, E. B. Gueguim-Kana, and L. S. Beukes (2016). J. Nanostruct. Chem. 6, 159.CrossRefGoogle Scholar
  5. 5.
    T. Zou, S. S. Percival, Q. Cheng, Z. Li, C. A. Rowe, and L. Gu (2012). Eur. J. Pharm. Pharm. 82, 36.Google Scholar
  6. 6.
    B. S. Kim and J. Y. Song, in C. T. Hou and J. F. Shaw (eds.), Biocatalysis and Biomolecular Engineering (Wiley, New York, 2010), pp. 447–457.Google Scholar
  7. 7.
    A. Lateef, I. A. Adelere, E. B. Gueguim-Kana, T. B. Asafa, and L. S. Beukes (2015). Int. Nano Lett. 5, 29.CrossRefGoogle Scholar
  8. 8.
    A. Lateef, S. A. Ojo, A. S. Akinwale, L. Azeez, E. B. Gueguim-Kana, and L. S. Beukes (2015). Biologia 70, 1295.Google Scholar
  9. 9.
    A. Lateef, S. A. Ojo, M. A. Azeez, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, E. B. Gueguim-Kana, and L. S. Beukes (2015). Appl. Nanosci. doi:10.1007/s13204-015-0492-9.Google Scholar
  10. 10.
    K. S. Mukunthan and S. Balaji (2012). Int. J. Green Nanotechnol. 4, 54.CrossRefGoogle Scholar
  11. 11.
    R. Subramanian, P. Subbramaniyan, and V. Raj (2013). SpringerPlus 2, 28.CrossRefGoogle Scholar
  12. 12.
    M. F. Anwar, D. Yadav, S. Kapoor, J. Chander, and M. Samim (2015). Drug Dev. Ind. Pharm. 41, 43.CrossRefGoogle Scholar
  13. 13.
    D. Nayak, S. Ashe, P. R. Rauta, M. Kumari, and B. Nayak (2016). Mater. Sci. Eng. C 58, 44–52.CrossRefGoogle Scholar
  14. 14.
    K. Murugan, C. Panneerselvam, C. M. Samidoss, P. Madhiyazhagan, U. Suresh, M. Roni, B. Chandramohan, J. Subramaniam, D. Dinesh, R. Rajaganesh, M. Paulpandi, H. Wei, A. T. Aziz, M. S. Alsalhi, S. Devanesan, M. Nicoletti, R. Pavela, A. Canale, and G. Benelli (2016). Res. Vet. Sci. 106, 14.CrossRefGoogle Scholar
  15. 15.
    C. Panneerselvam, K. Murugan, M. Roni, A. T. Aziz, U. Suresh, R. Rajaganesh, P. Madhiyazhagan, J. Subramaniam, D. Dinesh, M. Nicoletti, A. Higuchi, A. A. Alarfaj, M. A. Munusamy, S. Kumar, N. Desneux, and G. Benelli (2016). Parasitol. Res. 115, 997–1013.CrossRefGoogle Scholar
  16. 16.
    M. Govindarajan, M. Nicoletti, and G. Benelli (2016). J. Cluster Sci. 27, 745–761.CrossRefGoogle Scholar
  17. 17.
    M. Govindarajan, M. Rajeswary, K. Veerakumar, U. Muthukumaran, S. L. Hoti, H. F. Khater, and G. Benelli (2016). J. Photochem. Photobiol. B 161, 482–489.CrossRefGoogle Scholar
  18. 18.
    K. Murugan, C. Panneerselvam, A. T. Aziz, J. Subramaniam, P. Madhiyazhagan, J. S. Hwang, L. Wang, D. Dinesh, U. Suresh, M. Roni, A. Higuchi, M. Nicoletti, M. S. Alsalhi, and G. Benelli (2016). Environ. Sci. Pollut. Res.. doi:10.1007/s11356-016-6832-9.Google Scholar
  19. 19.
    N. Gogoi, P. J. Babu, C. Mahanta, and U. Bora (2015). Mater. Sci. Eng. C 46, 463.CrossRefGoogle Scholar
  20. 20.
    N. J. Reddy, D. N. Vali, M. Rani, and S. S. Rani (2014). Mater. Sci. Eng. C 34, 115.CrossRefGoogle Scholar
  21. 21.
    A. Lateef, M. A. Azeez, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, F. E. Ajetomobi, E. B. Gueguim-Kana, and L. S. Beukes (2015). Bionanoscience 5, 196.CrossRefGoogle Scholar
  22. 22.
    V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, and B. Sreedhar (2016). Mater. Sci. Eng. C 58, 36.CrossRefGoogle Scholar
  23. 23.
    I. A. Adelere and A. Lateef (2016). Nanotechnol. Rev.. doi:10.1515/ntrev-2016-0024.Google Scholar
  24. 24.
    S. Fazal, A. Jayasree, S. Sasidharan, M. Koyakutty, S. V. Nair, and D. Menon (2014). ACS Appl. Mater. 6, 8080.CrossRefGoogle Scholar
  25. 25.
    J. Wollgast and E. Anklam (2000). Food Res. Int. 33, 423.CrossRefGoogle Scholar
  26. 26.
    I. E. Dreosti (2000). Nutrition 16, 7.CrossRefGoogle Scholar
  27. 27.
    A. Othman, A. Ismail, N. A. Ghani, and I. Adenan (2007). Food Chem. 100, 1523.CrossRefGoogle Scholar
  28. 28.
    A. B. Granado-Serrano, M. A. Martín, G. Haegeman, L. Goya, L. Bravo, and S. Ramos (2010). Br. J. Nutr. 103, 168.CrossRefGoogle Scholar
  29. 29.
    M. A. Martín, A. B. Granado-Serrano, S. Ramos, M. I. Pulido, L. Bravo, and L. Goya (2010). J. Nutr. Biochem. 21, 196.CrossRefGoogle Scholar
  30. 30.
    M. A. Martín, L. Goya, and S. Ramos (2013). Food Chem. Toxicol. 56, 336.CrossRefGoogle Scholar
  31. 31.
    M. Abril-Gil, M. Massot-Cladera, F. J. Pérez-Cano, C. Castellote, A. Franch, and M. Castell (2012). Pharmacol. Res. 65, 603.CrossRefGoogle Scholar
  32. 32.
    D. Grassi, G. Desideri, S. Necozione, C. Lippi, R. Casale, G. Properzi, J. B. Blumberg, and C. Ferri (2008). J. Nutr. 138, 1671.Google Scholar
  33. 33.
    L. Hooper, C. Kay, A. Abdelhamid, P. A. Kroon, J. S. Cohn, E. B. Rimm, and A. Cassidy (2012). Am. J. Clin. Nutr. 95, 740.CrossRefGoogle Scholar
  34. 34.
    A. M. M. Ruzaidi, M. M. J. Abbe, I. Amin, A. G. Nawalyah, and H. Muhajir (2008). J. Sci. Food Agric. 88, 1142.CrossRefGoogle Scholar
  35. 35.
    M. A. Vazquez-Prieto, A. Bettaieb, F. G. Haj, C. G. Fraga, and P. I. Oteiza (2012). Arch. Biochem. Biophys. 527, 113.CrossRefGoogle Scholar
  36. 36.
    A. Lateef, T. E. Davies, A. Adelekan, I. A. Adelere, A. A. Adedeji, and A. H. Fadahunsi (2010). Food Sci. Technol. Int. 16, 389.CrossRefGoogle Scholar
  37. 37.
    A. Lateef and M. O. Ojo (2016). Qual. Assur. Saf. Crops Foods 8, 165.CrossRefGoogle Scholar
  38. 38.
    A. Thirumurugan, N. A. Tomy, H. P. Kumar, and P. Prakash (2011). Int. J. Nanomater. Biostruct. 1, 22.Google Scholar
  39. 39.
    S. Zaki, M. F. El-Kady, and D. Abd-El-Haleem (2011). Mater. Res. Bull. 46, 1571.CrossRefGoogle Scholar
  40. 40.
    R. R. R. Kannan, R. Arumugam, D. Ramya, K. Manivannan, and P. Anantharaman (2013). Appl. Nanosci. 3, 229.CrossRefGoogle Scholar
  41. 41.
    S. Priyadarshini, V. Gopinath, N. M. Priyadharsshini, D. M. Ali, and P. Velusamy (2013). Colloids Surf. B 102, 232.CrossRefGoogle Scholar
  42. 42.
    W. M. Salem, M. Haridy, W. F. Sayed, and N. H. Hassan (2014). Ind. Crop. Prod. 62, 228.CrossRefGoogle Scholar
  43. 43.
    L. C. Vriesmann, R. D. D. M. C. Amboni, and C. L. de Oliveira Petkowicz (2001). Ind. Crop. Prod. 34, 1173.CrossRefGoogle Scholar
  44. 44.
    K. Shameli, M. B. Ahmad, M. Zargar, W. M. Yunus, N. A. Ibrahim, P. Sha-banzadeh, and M. Ghaffari-Moghadam (2011). Int. J. Nanomed. 6, 271.CrossRefGoogle Scholar
  45. 45.
    S. Shankar, L. Jaiswal, R. S. L. Aparna, and R. G. S. V. Prasad (2014). Mater. Lett. 137, 75.CrossRefGoogle Scholar
  46. 46.
    S. O. Adewoye and A. Lateef (2004). Environmentalist 24, 249.CrossRefGoogle Scholar
  47. 47.
    A. Lateef (2004). World J. Microbiol. Biotechnol. 20, 167.CrossRefGoogle Scholar
  48. 48.
    A. Lateef, J. K. Oloke, and E. B. Gueguim-Kana (2004). Afr. J. Biotechnol. 3, 334–338.CrossRefGoogle Scholar
  49. 49.
    A. Lateef, J. K. Oloke, and E. B. Gueguim-Kana (2005). Environ. Monit. Assess. 100, 59–69.CrossRefGoogle Scholar
  50. 50.
    A. Lateef and T. A. Yekeen (2006). Int. J. Environ. Stud. 63, 535–536.Google Scholar
  51. 51.
    A. Lateef, J. K. Oloke, E. B. Gueguim-Kana, and E. Pacheco (2006). Internet J. Food Saf. 8, 39–43.Google Scholar
  52. 52.
    A. Lateef, T. A. Yekeen, and P. E. Ufuoma (2007). Int. J. Environ. Health 1, 551–562.CrossRefGoogle Scholar
  53. 53.
    M. K. Zielińska-Górska, E. Sawosz, K. Górski, and A. Chwalibog (2016). Nanotechnol. Rev.. doi:10.1515/ntrev-2016-0042.Google Scholar
  54. 54.
    J. P. Kaiser, S. Zuin, and P. Wick (2013). Sci. Total Environ. 442, 282–289.CrossRefGoogle Scholar
  55. 55.
    S. M. Roopan, G. R. Madhumitha, A. A. Rahuman, C. Kamaraj, A. Bharathi, and T. V. Surendra (2013). Ind. Crop. Prod. 43, 631.CrossRefGoogle Scholar
  56. 56.
    K. A. Priyadarshini, K. Murugan, C. Panneerselvam, S. Ponarulselvam, J. S. Hwang, and M. Nicoletti (2012). Parasitol. Res. 111, 997.CrossRefGoogle Scholar
  57. 57.
    C. D. Patil, H. P. Borase, S. V. Patil, R. B. Salunkhe, and B. K. Salunke (2012). Parasitol. Res. 111, 555.CrossRefGoogle Scholar
  58. 58.
    G. Benelli (2016). Parasitol. Res. 115, 23.CrossRefGoogle Scholar
  59. 59.
    S. Shrivastava, T. Bera, S. K. Singh, G. Singh, P. Ramachandrarao, and D. Dash (2009). ACS Nano 3, 1357.CrossRefGoogle Scholar
  60. 60.
    A. Lateef, M. A. Akande, S. A. Ojo, B. I. Folarin, E. B. Gueguim-Kana, and L. S. Beukes (2016). 3 Biotech. 6, 140. doi:10.1007/s13205-016-0459-x.
  61. 61.
    A. Lateef, S. A. Ojo, and S. M. Oladejo (2016). Process Biochem.. doi:10.1016/j.procbio.2016.06.027.Google Scholar
  62. 62.
    B. S. Harish, K. B. Uppuluri, and V. Anbazhagan (2015). Carbohydr. Polymer 132, 104–110.CrossRefGoogle Scholar
  63. 63.
    S. A. Ojo, A. Lateef, M. A. Azeez, S. M. Oladejo, A. S. Akinwale, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, E. B. Gueguim-Kana, and L. S. Beukes (2016). IEEE Trans. Nanobiosci.. doi:10.1109/TNB.2016.2559161.Google Scholar
  64. 64.
    A. Lateef, S. A. Ojo, B. I. Folarin, E. B. Gueguim-Kana, and L. S. Beukes (2016). J. Cluster Sci. doi:10.1007/s10876-016-1019-6.Google Scholar
  65. 65.
    H. K. Kim, M. J. Choi, S. H. Cha, Y. K. Koo, S. H. Jun, S. Cho, and Y. Park (2013). Nanoscale Res. Lett. 8, 1.CrossRefGoogle Scholar
  66. 66.
    P. Prandoni, A. Falanga, and A. Piccioli (2007). Thromb. Res. 120, S137.CrossRefGoogle Scholar
  67. 67.
    D. Davalos and K. Akassoglou (2012). Semin. Immunopathol. 34, 43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Musibau A. Azeez
    • 1
  • Agbaje Lateef
    • 1
    • 2
  • Tesleem B. Asafa
    • 3
  • Taofeek A. Yekeen
    • 1
  • Akeem Akinboro
    • 1
  • Iyabo C. Oladipo
    • 4
  • Evariste B. Gueguim-Kana
    • 5
  • Lorika S. Beukes
    • 6
  1. 1.Department of Pure and Applied BiologyLadoke Akintola University of TechnologyOgbomosoNigeria
  2. 2.Laboratory of Industrial Microbiology and NanobiotechnologyLadoke Akintola University of TechnologyOgbomosoNigeria
  3. 3.Department of Mechanical EngineeringLadoke Akintola University of TechnologyOgbomosoNigeria
  4. 4.Department of Science Laboratory TechnologyLadoke Akintola University of TechnologyOgbomosoNigeria
  5. 5.Department of Microbiology, School of Life SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
  6. 6.Microscopy and Microanalysis Unit, School of Life SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations