Journal of Cluster Science

, Volume 27, Issue 5, pp 1561–1577 | Cite as

Kolanut (Cola nitida) Mediated Synthesis of Silver–Gold Alloy Nanoparticles: Antifungal, Catalytic, Larvicidal and Thrombolytic Applications

  • A. Lateef
  • S. A. Ojo
  • B. I. Folarin
  • E. B. Gueguim-Kana
  • L. S. Beukes
Original Paper

Abstract

This study investigated use of leaf, seed, seed shell and pod extracts of Cola nitida for the green synthesis of silver-alloy nanoparticles (Ag–AuNPs). The Ag–AuNPs formed were dark brown with maxima absorbance in the range of 497–531 nm. FTIR peaks at 3290–3396 and 1635–1647 cm−1 showed that proteins were the capping and stabilization molecules for the synthesis of Ag–AuNPs. While leaf, seed and seed shell extract-mediated Ag–AuNPs had near spherical morphology, anisotropic structures of sphere, rod, hexagon and triangle were formed by pod extract. The polydispersed particles were 17–91 nm in size, with crystalline characteristics and prominent presence of Ag and Au in the EDX spectra. Ag–AuNPs inhibited growth of Aspergillus flavus, A. fumigatus and A. niger by 69.51–100 %. Exposure of Anopheles mosquito larvae to Ag–AuNPs resulted in 80–100 % mortality in 24 h. Catalytic degradation of >90 and >60 % were obtained for malachite green and methylene blue respectively after 24 h. The particles displayed potent blood anticoagulant and thrombolytic activities, indicative of their potentials in the management blood coagulation disorders. This study showed that C. nitida can be used for green synthesis of Ag–AuNPs, which is the first report of its kind.

Keywords

Cola nitida Silver-alloy nanoparticles Antifungal Malachite green Methylene blue Anopheles larvae Thrombolysis 

Notes

Acknowledgments

AL is grateful to the authority of LAUTECH, Ogbomoso, Nigeria for the provision of some of the facilities used in this study.

References

  1. 1.
    S. M. Roopan, T. V. Surendra, G. Elango, and S. H. S. Kumar (2014). Appl. Microbiol. Biotechnol. 98, 5289.CrossRefGoogle Scholar
  2. 2.
    A. Mishra, M. Kumari, S. Pandey, V. Chaudhry, K. C. Gupta, and C. S. Nautiyal (2014). Bioresour. Technol. 166, 235.CrossRefGoogle Scholar
  3. 3.
    G. M. Nazeruddin, N. R. Prasad, S. R. Waghmare, K. M. Garadkar, and I. S. Mulla (2014). J. Alloys Compd. 583, 272.CrossRefGoogle Scholar
  4. 4.
    N. Shanmugam, P. Rajkamal, S. Cholan, N. Kannadasan, K. Sathishkumar, G. Viruthagiri, and A. Sundaramanickam (2014). Appl. Nanosci. 4, 881.CrossRefGoogle Scholar
  5. 5.
    A. I. El-Batal, N. M. ElKenawya, A. S. Yassin, and M. A. Amin (2015). Biotechnol. Rep. 5, 31.CrossRefGoogle Scholar
  6. 6.
    A. Lateef, I. A. Adelere, E. B. Gueguim-Kana, T. B. Asafa, and L. S. Beukes (2015). Int. Nano Lett. 5, 29.CrossRefGoogle Scholar
  7. 7.
    A. Lateef, S. A. Ojo, M. A. Azeez, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, E. B. Gueguim-Kana, and L. S. Beukes (2015) Appl. Nanosci. doi: 10.1007/s13204-015-0492-9.
  8. 8.
    A. Lateef, M. A. Azeez, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, F. E. Ajetomobi, E. B. Gueguim-Kana, and L. S. Beukes (2015). BioNanoSci. 5, 196.CrossRefGoogle Scholar
  9. 9.
    A. Lateef, S. A. Ojo, A. S. Akinwale, L. Azeez, E. B. Gueguim-Kana, and L. S. Beukes (2015). Biologia 70, 1295.Google Scholar
  10. 10.
    A. Lateef and A. O. Adeeyo (2015). Not. Sci. Biol. 7, 405.CrossRefGoogle Scholar
  11. 11.
    A. Lateef, M. A. Azeez, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, L. Azeez, S. E. Ajibade, S. A. Ojo, E. B. Gueguim-Kana, and L. S. Beukes (2016) J. Taibah Univ. Sci. doi: 10.1016/j.jtusci.2015.10.010.
  12. 12.
    S. Yallappa, J. Manjanna, S. K. Peethambar, A. N. Rajeshwara, and N. D. Satyanarayan (2013). J. Clust. Sci. 24, 1081.CrossRefGoogle Scholar
  13. 13.
    W. M. Salem, M. Haridy, W. F. Sayed, and N. H. Hassan (2014). Ind. Crops Prod. 62, 228.CrossRefGoogle Scholar
  14. 14.
    S. Mondal, N. Roy, R. A. Laskar, S. K. Ismail, S. Basu, D. Mandal, and N. A. Begum (2011). Colloids Surf. B: Biointerface 82, 497.CrossRefGoogle Scholar
  15. 15.
    K. Bankura, D. Maity, M. M. R. Mollick, D. Mondal, B. Bhowmick, I. Roy, T. Midya, J. Sarkar, D. Rana, K. Acharya, and D. Chattopadhyay (2014). Carbohydr. Polym 107, 151.CrossRefGoogle Scholar
  16. 16.
    M. M. Kumari, J. Jacob, and D. Philip (2015). Spectrochim. Acta Part A: Mol. Biomol. Spectr. 137, 185.CrossRefGoogle Scholar
  17. 17.
    T. D. Nguyen, T. D. Tran, and T. H. N. Thi (2015). J Clust. Sci. 26, 1787.CrossRefGoogle Scholar
  18. 18.
    S. Yallappa, J. Manjanna, and B. L. Dhananjaya (2015). Spectrochim. Acta Part A: Mol. Biomol. Spectr. 137, 236.CrossRefGoogle Scholar
  19. 19.
    C. Fasciani, M. J. Silvero, M. A. Anghel, G. A. Argüello, M. C. Becerra, and J. C. Scaiano (2014). J. Am. Chem. Soc. 136, 17394.CrossRefGoogle Scholar
  20. 20.
    D. S. Sheny, J. Mathew, and D. Philip (2011). Spectrochim Acta Part A: Mol. Biomol. Spectr. 79, 254.CrossRefGoogle Scholar
  21. 21.
    S. Shankar, L. Jaiswal, R. S. L. Aparna, and R. G. S. V. Prasad (2014). Mater. Lett. 137, 75.CrossRefGoogle Scholar
  22. 22.
    S. Malathi, T. Ezhilarasu, T. Abiraman, and S. Balasubramanian (2014). Carbohydr. Polym. 111, 734.CrossRefGoogle Scholar
  23. 23.
    G. R. Salunke, S. Ghosh, R. S. Kumar, S. Khade, P. Vashisth, T. Kale, S. Chopade, V. Pruthi, G. Kundu, J. R. Bellare, and B. A. Chopade (2014). Int. J. Nanomed. 9, 2635.Google Scholar
  24. 24.
    L. Rahman, A. Shah, S. B. Khan, A. M. Asiri, H. Hussain, C. Han, R. Qureshi, M. N. Ashiq, M. A. Zia, M. Ishaq, and H. B. Kraatz (2015). J. Appl. Electrochem. 45, 463.CrossRefGoogle Scholar
  25. 25.
    R. Akinoso, A. K. Aremu, and I. S. Balogun (2014). Int. Agrophys. 28, 251.CrossRefGoogle Scholar
  26. 26.
    A. C. Odebode (1996). Rev. Biol. Trop. 44, 513.Google Scholar
  27. 27.
    E. U. Asogwa, J. C. Anikwe, and F. C. Ihokwunye (2006). Afr. Sci. 7, 4.Google Scholar
  28. 28.
    E. A. Dewole, D. F. A. Dewumi, J. Y. T. Alabi, and A. Adegoke (2013). Pak. J. Biol. Sci. 16, 1593.CrossRefGoogle Scholar
  29. 29.
  30. 30.
    H. I. C. Lowe, C. T. Watson, S. Badal, P. Peart, N. J. Toyang, and J. Bryant (2014). Adv. Biol. Chem. 4, 240.CrossRefGoogle Scholar
  31. 31.
    C. Orwa, A. Mutua, R. Kindt, R. Jamnadass, and S. Anthony (2009). http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp. Accessed on 19 June, 2015.
  32. 32.
    M. Khatami, S. Pourseyedi, M. Khatami, H. Hamidi, M. Zaeifi, and L. Soltani (2015). Bioresour. Bioprod. 2, 19.CrossRefGoogle Scholar
  33. 33.
    B. S. Harish, K. B. Uppuluri, and V. Anbazhagan (2015). Carbohydr. Polym 132, 104.CrossRefGoogle Scholar
  34. 34.
    E. E. Emeka, O. C. Ojiefoh, C. Aleruchi, L. A. Hassan, O. M. Christiana, M. Rebecca, E. O. Dare, and A. E. Temitope (2014). Micron 57, 1.CrossRefGoogle Scholar
  35. 35.
    B. B. Babatunde and R. A. Hamzat (2005). Nig. J. Anim. Prod. 32, 61.Google Scholar
  36. 36.
    J. Abioye, A. O. Fanimo, A. M. Bamgbose, M. A. Dipeolu, and O. Olubamiwa (2006). J. Poultr. Sci. 43, 365.CrossRefGoogle Scholar
  37. 37.
    E. E. A. Oyedunmade, J. O. Babatola, and T. I. Olabiyi (1995). Nematol. Mediterr. 23, 61.Google Scholar
  38. 38.
    E. A. Makinde, R. R. Ipinmoroti, G. O. Iremiren, and L. S. Ayeni (2013). Res. Rev.: J. Bot. Sci. 2, 9.Google Scholar
  39. 39.
    A. A. Taiwo, I. Oluwadare, A. O. Shobo, and S. A. Amolegbe (2008). Sci. Res. Essay 3, 515.Google Scholar
  40. 40.
    O. Adeyi (2010). J. Appl. Sci. Environ. Manag. 14, 55.Google Scholar
  41. 41.
    O. S. Ayanda, O. Adeyi, B. Durojaiye, and O. Olafisoye (2012). Pol. J. Environ. Stud. 21, 1147.Google Scholar
  42. 42.
    A. Lateef, J. K. Oloke, E. B. Gueguim Kana, and O. R. Raimi (2012). Acta Aliment. 41, 100.CrossRefGoogle Scholar
  43. 43.
    T. Odugbemi, and O. Akinsulire (2008). Medicinal plants according to family names. In: Outlines and Pictures of Medicinal plants from Nigeria (Odugbemi T., Ed.). University of Lagos Press, Lagos, ISBN 978-978-48712-7-3. pp. 158.Google Scholar
  44. 44.
    M. Sonibare, M. Soladoye, O. Esan, and O. Sonibare (2009). Afr. J. Trad. Complem. Alternat. Med 6, 518.Google Scholar
  45. 45.
    P. Piruthiviraj, A. Margret, and P.P. Krishnamurthy (2015). Appl. Nanosci. doi: 10.1007/s13204-015-0460-4.
  46. 46.
    K. A. Priyadarshini, K. Murugan, C. Panneerselvam, S. Ponarulselvam, J. S. Hwang, and M. Nicoletti (2012). Parasitol. Res. 111, 997.CrossRefGoogle Scholar
  47. 47.
    K. Velu, D. Elumalai, P. Hemalatha, A. Janaki, M. Babu, M. Hemavathi, and P. K. Kaleena (2015). Environ. Sci. Pollut. Res. 22, 17769.CrossRefGoogle Scholar
  48. 48.
    S. M. Roopan, G. Madhumitha, A. A. Rahuman, C. Kamaraj, A. Bharathi, and T. V. Surendra (2013). Ind. Crops Prod. 43, 631.CrossRefGoogle Scholar
  49. 49.
    M. Tavakol, P. A. Azar, M. S. Tehrani, and M. Ghaedi (2015). Int. J. Life Sci. 9, 75.CrossRefGoogle Scholar
  50. 50.
    T. J. L. Edison and M. G. Sethuraman (2012). Process Biochem. 47, 1351.CrossRefGoogle Scholar
  51. 51.
    T. H. Han, M. M. Khan, S. Kalathil, J. Lee, and M. H. Cho (2013). Ind. Eng. Chem. Res. 52, 8174.CrossRefGoogle Scholar
  52. 52.
    A. R. Vilchis-Nestor, J. Trujillo-Reyes, J. A. Colín-Molina, V. Sánchez-Mendieta, and M. Avalos-Borja (2014). Int. J. Environ. Sci. Technol. 11, 977.CrossRefGoogle Scholar
  53. 53.
    N. K. R. Bogireddy, K. K. H. Anand, and B. K. Mandal (2015). J. Mol. Liquids 211, 868.CrossRefGoogle Scholar
  54. 54.
    M. M. Kumari and D. Philip (2015). Spectrochim. Acta Part A: Mol. Biomol. Spectr. 135, 632.CrossRefGoogle Scholar
  55. 55.
    N. Gupta, H. P. Singh, and R. K. Sharma (2011). J. Mol. Catal. A: Chem. 335, 248.CrossRefGoogle Scholar
  56. 56.
    N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri (2012). Int. J. Mol. Sci. 13, 12242.CrossRefGoogle Scholar
  57. 57.
    C. T. Esmon, J. Xu, and F. Lupu (2011). J. Thromb. Haemost. 9, 182.CrossRefGoogle Scholar
  58. 58.
    M. Levi, M. Schultz, and T. van der Poll (2010). Semin. Thromb. Hemost. 36, 367.CrossRefGoogle Scholar
  59. 59.
    P. Prandoni, A. Falanga, and A. Piccioli (2007). Thromb. Res. 120, S137.CrossRefGoogle Scholar
  60. 60.
    D. Davalos and K. Akassoglou (2012). Semin. Immunopathol. 34, 43.CrossRefGoogle Scholar
  61. 61.
    S. Shrivastava, T. Bera, S. K. Singh, G. Singh, P. Ramachandrarao, and D. Dash (2009). ACS Nano. 3, 1357.CrossRefGoogle Scholar
  62. 62.
    H. K. Kim, M. J. Choi, S. H. Cha, Y. K. Koo, S. H. Jun, S. Cho, and Y. Park (2013). Nanoscale Res. Lett. 8, 1.CrossRefGoogle Scholar
  63. 63.
    H. S. Kim, S. H. Jun, Y. K. Koo, S. Cho, and Y. Park (2013). J. Nanosci. Nanotechnol. 13, 2068.CrossRefGoogle Scholar
  64. 64.
    N. Khlebtsov, V. Bogatyrev, L. Dykman, B. Khlebtsov, S. Staroverov, A. Shirokov, L. Matora, V. Khanadeev, T. Pylaev, N. Tsyganova, and G. Terentyuk (2013). Theranostics 3, 167.CrossRefGoogle Scholar
  65. 65.
    M. Jeyaraj, S. Varadan, K. J. P. Anthony, M. Murugan, A. Raja, and S. Gurunathan (2013). J Ind Eng Chem 19, 1299.CrossRefGoogle Scholar
  66. 66.
    A. N. Ilinskaya and M. A. Dobrovolskaia (2013). Nanomed. 8, 773.CrossRefGoogle Scholar
  67. 67.
    A. K. A. Silva, D. Letourneur, and C. Chauvierre (2014). Theranostics 4, 576.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. Lateef
    • 1
  • S. A. Ojo
    • 1
  • B. I. Folarin
    • 1
  • E. B. Gueguim-Kana
    • 2
  • L. S. Beukes
    • 3
  1. 1.Department of Pure and Applied BiologyLadoke Akintola University of TechnologyOgbomosoNigeria
  2. 2.Department of Microbiology, School of Life SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
  3. 3.Microscopy and Microanalysis Unit, School of Life SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations