Journal of Cluster Science

, Volume 27, Issue 2, pp 763–773 | Cite as

Development and Implementation of a Micro-electric Discharge Machine: Real-Time Monitoring System of Fabrication of Nanosilver Colloid

  • Kuo Hsiung Tseng
  • Yi-Syuan Kao
  • Chaur-Yang Chang
Original Paper


This Study synthesized the nanosilver colloid (NSC) via arc discharge. The electric force ionizes the deionized water (DW) inter electrode gap, and the plenty of electrons and ions are attracted by opposite electricity. The electrons and ions strike surface of the electrodes, and sputter the nanosilver particles (NSP). The NSP stably suspend in the DW without surface-active agent. It is a novel and rapid preparation in the standard temperature and pressure. Although the industrial electric discharge machine (EDM) could synthesize NSC, it’s too costly and big size. The self-designing micro-EDM that can real-time monitor the processing is substitute the industrial-EDM. By the spectrophotometry, the zetasizer and the scanning electron microscope validate the properties of the NSC that synthesized by the micro-EDM. The results show that the NSC is the same as the features of nanomaterials. The energy of the discharge can be controlled, that can determine the process time. The concentration of the NSP can effectively reduce the difference between the products of the NSC. As the arcing rate (AR) and the absorption peaks are highly correlated, the concentration of the NSP can be predicted during processing. It’s a speedy and preliminary determine of the concentration.


Electric discharge machine Arc discharge Silver colloid Nanosilver 



The authors would like to thank the Ministry of Science and Technology (MOST 103-2221-E-027-070-) for financial supporting this research.


  1. 1.
    Jonathan A. Scholl, Aitzol García-Etxarri, Ai Leen Koh, and Jennifer A. Dionne (2013). Nano Lett. 13, 564.CrossRefGoogle Scholar
  2. 2.
    Kuo-Hsiung Tseng, Chih-Yu Liao, Jen-Chuen Huang, Der-Chi Tien, and Tsing-Tshih Tsung (2008). Mater. Lett. 62, 3341.CrossRefGoogle Scholar
  3. 3.
    D. C. Tien, C. Y. Liao, J. C. Huang, K. H. Tseng, J. K. Lung, and T. T. Tsung (2008). Rev. Adv. Mater. Sci. 18, 750.Google Scholar
  4. 4.
    Chih-Yu Liao, Kuo-Hsiung Tseng, and Hong-Shiou Lin (2013). Metallu. Mater. Trans. B 44, 91.CrossRefGoogle Scholar
  5. 5.
    Kuo-Hsiung Tseng, Juei-Long Chiu, Heng-Lin Lee, Chih-Yu Liao, Hong-Shiou Lin, and Yi-Syuan Kao (2015). Adv. Mater. Sci. Eng. 2015, 1.CrossRefGoogle Scholar
  6. 6.
    F. Fang, J. Kennedy, J. Futter, T. Hopf, A. Markwitz, E. Manikandan, and G. Henshaw (2011). Nanotechlogy 22, 33.Google Scholar
  7. 7.
    R. K. Sahu, S. H. Somashekhar, and P. V. Manivannan (2013). Proc. Eng. 64, 946.CrossRefGoogle Scholar
  8. 8.
    Enbo Yang and Masaaki Nagatsu (2014). Jpn. J. Appl. Phys. 53, 1.Google Scholar
  9. 9.
    Marin Gostimirovic, Pavel Kovac, Milenko Sekulic, and Branko Skoric (2012). J. Mech. Sci. Technol. 26, 173.CrossRefGoogle Scholar
  10. 10.
    Tushara Prakash, Grant V. M. Williams, John Kennedy, Peter P. Murmu, Jérôme Leveneur, Shen V. Chong, and Sergey Rubanovd (2014). J. Alloy. Compd. 608, 153.CrossRefGoogle Scholar
  11. 11.
    A. Cuche, B. Stein, A. Canaguier-Durand, E. Devaux, C. Genet, and T. W. Ebbesen (2012). Nano Lett. 12, 4329.CrossRefGoogle Scholar
  12. 12.
    Ian C. Bourg and Garrison Sposito (2011). J. Colloid Interface Sci. 360, 701.CrossRefGoogle Scholar
  13. 13.
    Jun Liu, Yangyang Gao, Dapeng Cao, Liqun Zhang, and Zhanhu Guo (2011). Langmuir 27, 7926.CrossRefGoogle Scholar
  14. 14.
    Jie Lana, Yong Yang, and Xiaochun Li (2004). Mater. Sci. Eng. A 386, 284.CrossRefGoogle Scholar
  15. 15.
    Kadir Aslana, Joseph R. Lakowiczb, and Chris D. Geddesa (2004). Anal. Biochem. 330, 145.CrossRefGoogle Scholar
  16. 16.
    Yu A Akimov, W. S. Koh, and K. Ostrikov (2009). Opt. Express 17, 10195.CrossRefGoogle Scholar
  17. 17.
    F. Fang, J. Kennedy, E. Manikandan, J. Futter, and A. Markwitz (2012). Chem. Phys. Lett. 521, 86.CrossRefGoogle Scholar
  18. 18.
    Majid Darroudi, Mansor Bin Ahmad, Reza Zamiri, A. K. Zak, Abdul Halim Abdullah, and Nor Azowa Ibrahim (2011). Int. J. Nanomed. 6, 677.CrossRefGoogle Scholar
  19. 19.
    Kuo-Hsiung Tseng, Juei-Long Chiu, Heng-Lin Lee, Yi-Syuan Kao, and Der-Chi Tien (2016). Mater. Manuf. Process. 31, 186.CrossRefGoogle Scholar
  20. 20.
    Jiunn-Woei Liaw, Shiao-Wen Tsaib, Hung-Hsun Lina, Tzu-Chen Yend, and Bae-Renn Cheng (2012). J. Quant. Spectrosc. Radiat. Transf. 113, 2234.CrossRefGoogle Scholar
  21. 21.
    Zhaowei Liua, Guogang Renb, Tao Zhangc, and Zhuo Yang (2009). Toxicology 264, 179.CrossRefGoogle Scholar
  22. 22.
    M. M. Mukaka (2012). Malawi Med. J. 24, 69.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kuo Hsiung Tseng
    • 1
  • Yi-Syuan Kao
    • 1
  • Chaur-Yang Chang
    • 1
  1. 1.Department of Electrical EngineeringNational Taipei University of TechnologyTaipeiTaiwan

Personalised recommendations