Advertisement

Journal of Cluster Science

, Volume 27, Issue 1, pp 193–211 | Cite as

Preparation, Characterization and Transport Properties of Novel Cation-Exchange Nanocomposite Membrane Containing BaFe12O19 Nanoparticles

  • Farhad HeidaryEmail author
  • Ali Nemati KharatEmail author
  • Ali Reza Khodabakhshi
Original Paper

Abstract

A new type of ion-exchange nanocomposite membranes was prepared by addition of barium ferrite nanoparticles to a blend containing sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) and sulfonated polyvinylchloride via a simple casting method. Hard magnetic BaFe12O19 nanoparticles were synthesized via a facile sonochemical-assisted reaction. Nanoparticles and nanocomposites were then characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and alternating gradient force magnetometer. Various characterizations revealed that the addition of different amounts of inorganic fillers could affect the membrane performance. The inorganic nanoparticles not only created extra pores and water channels that led to improve ion conductivity, but also provided higher permselectivity and transport number of counter-ions.

Keywords

Composites Barium ferrite nanoparticles Cation-exchange membranes Permselectivity Transport number 

Abbreviations

SPPO

Sulfonated poly (2,6-dimethyl-1,4-phenylene oxide)

SPVC

Sulfonated polyvinylchloride

IEMS

Ion-exchange membranes

THF

Tetrahydrofuran

SEM

Scanning electron microscope

FT-IR

Fourier transform infrared spectroscopy

AGFM

Alternating gradient force magnetometer

IEC

Ion-exchange capacity

Em

Membrane potential (mV)

\({\text{t}}_{\text{i}}^{\text{m}}\); t0

Transport number of counter ions in membrane phase; in solution

Ps

Membrane ionic permselectivity

Y

Concentration of fixed charge on the membrane surface

C.E

Current efficiency

a

Milli-equivalent of ion-exchange groups in membrane (meq)

A

Membrane surface area (m2)

β

Width of the observed diffraction peak at its half maximum intensity

λ

X-ray wavelength

a1, a2

Ions electrolytic activities

Cmean

Mean concentration of electrolytes (M)

d

Membrane thickness (m)

∆n

Number of transported moles through membrane

F

Faraday constant

I

Current intensity (A)

n, Zi

Electrovalence of ion

r

Areal electrical resistance (Ω cm2)

R

Universal gases constant (J mol−1 K−1)

R1 and R2

Electrical resistance (Ω)

Rm

Membrane resistance (Ω)

T

Temperature (K)

t

Time (min)

Notes

Acknowledgments

The authors are thankful to Laboratory of Functional Membranes (University of Science and Technology of China) for providing PPO.

References

  1. 1.
    M. Seno, M. Takagi, K. Takeda, M. Teramoto, T. Hashimoto, Hand-book of Separation Science (Kyoritsu, Tokyo, 1993).Google Scholar
  2. 2.
    M. Kogure, H. Ohya, R. Paterson, M. Hosaka, J. Kim, S. McFadzean (1997) J. Membr. Sci. 126, 161.CrossRefGoogle Scholar
  3. 3.
    T. Sata (2000) J. Membr. Sci. 167, 1.CrossRefGoogle Scholar
  4. 4.
    J. R. Varcoe, R. C. T. Slade (2005) Fuel Cells 5, 187.CrossRefGoogle Scholar
  5. 5.
    F. Q. Liu, B. L. Yi, D. M. Xing, J. R. Yu, H. M. Zhang (2003) J. Membr. Sci. 212, 213.CrossRefGoogle Scholar
  6. 6.
    R. K. Nagarale, G. S. Gohil, V. K. Shahi (2006) Adv. Colloid Interface Sci. 119, 97.CrossRefGoogle Scholar
  7. 7.
    C.T. Matos, S. Velizarov, J. G. Crespo (2006) Water Res. 40, 231.CrossRefGoogle Scholar
  8. 8.
    K. A. Mauritz (1998) Mater. Sci. Eng. C6, 121.CrossRefGoogle Scholar
  9. 9.
    M. L. Sforca, I. V. P. Yoshida, S. P. Nunes (1999) J. Membr. Sci. 159, 197.CrossRefGoogle Scholar
  10. 10.
    R. K. Nagarale, G. S. Gohil, V. K. Shahi, G. S. Trivedi, R. Rangarajan (2004) J. Colloid Interface Sci. 277, 162.CrossRefGoogle Scholar
  11. 11.
    M. M. A. Khan, Rafiuddin (2012) J. Appl. Polymer Sci. 124, 338.CrossRefGoogle Scholar
  12. 12.
    A. R. Khodabakhshi, S. S. Madaeni, T. W. Xu, L. Wu, C. Wu, C. Li, W. Na, S. A. Zolanvari, A. Babayi, J. Ghasemi, S. M. Hosseini, A. Khaledi (2012) Sep. Purif. Technol. 90, 10.CrossRefGoogle Scholar
  13. 13.
    T. W. Xu, W. H. Yang, B. L. He (2002) Chin. J. Polym. Sci. 20, 53.Google Scholar
  14. 14.
    T. W. Xu, D. Wu, L. Wu (2008) Prog. Polym. Sci. 33, 894.CrossRefGoogle Scholar
  15. 15.
    H. Yu, T. W. Xu (2006) J. Appl. Polym. Sci. 100, 2238.CrossRefGoogle Scholar
  16. 16.
    D. Wu, L. Wu, J. J. Woo, S. H. Yun, S. J. Seo, T. W. Xu, S. H. Moon (2010) J. Membr. Sci. 348, 167.CrossRefGoogle Scholar
  17. 17.
    X. Zhang, Y. Chen, A. H. Konsowa, X. Zhu, J.C. Crittenden (2009) Sep. Purif. Technol. 70, 71.CrossRefGoogle Scholar
  18. 18.
    L. Xu, H. K. Lee (2009) J. Chromatogr. A 1216, 6549.CrossRefGoogle Scholar
  19. 19.
    G. Nabiyouni, D. Ghanbari, A. Yousofnejad, M. Seraj (2014) J. Ind. Eng. Chem. 20, 3425.CrossRefGoogle Scholar
  20. 20.
    J. Saffari, D. Ghanbari, N. Mir, K. Khandan-Barani (2014) J. Ind. Eng. Chem. 20, 4119.CrossRefGoogle Scholar
  21. 21.
    D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch (2014) J. Ind. Eng. Chem. 20, 3970.CrossRefGoogle Scholar
  22. 22.
    T. W. Xu, W. H. Yang, B. L. He (2001) Chem. Eng. Sci. 56, 5343.CrossRefGoogle Scholar
  23. 23.
    H. Strathmann, Electrodialysis and Related Processes , Membrane Separations Technology Principles and Applications, (Elsevier, New York, 1995).Google Scholar
  24. 24.
    R. Scherer, A. M. Bernardes, M. M. C. Forte, J. Z. Ferreira, C. A. Ferreira (2001) Mater. Chem. Phys. 71, 131.CrossRefGoogle Scholar
  25. 25.
    W. Cui, J. Kerres, G. Eigenberger (1998) Sep. Purif. Technol. 14, 145.CrossRefGoogle Scholar
  26. 26.
    R. K. Nagarale, V. K. Shahi, R. Rangarajan (2005) J. Membr. Sci. 248, 37.CrossRefGoogle Scholar
  27. 27.
    G. S. Gohil, V. V. Binsu, V. K. Shahi (2006) J. Membr. Sci. 280, 210.CrossRefGoogle Scholar
  28. 28.
    J. Schauer, V. Kudela, K. Richau, R. Mohr (2006) Desalination 198, 256.CrossRefGoogle Scholar
  29. 29.
    L. Lebrun, E. Da Silva, G. Pourcelly, M. Métayer (2003) J. Membr. Sci. 227, 95.CrossRefGoogle Scholar
  30. 30.
    D. R. Lide, CRC Handbook of Chemistry and Physics, (CRC Press, Boca Raton, 2007).Google Scholar
  31. 31.
    A. R. Khodabakhshi, S. S. Madaeni, S. M. Hosseini (2011) Sep. Purif. Technol. 77, 220.CrossRefGoogle Scholar
  32. 32.
    A. R. Khodabakhshi, S. S. Madaeni, S. M. Hosseini (2011) Polym. Int. 60, 466.CrossRefGoogle Scholar
  33. 33.
    Y. Tanaka, Ion Exchange Membranes Fundamentals And Applications , Membrane Science and Technology Series, Vol. 12, (Elsevier, Netherlands, 2007).Google Scholar
  34. 34.
    S. Ovtar, D. Lisjak, M. Drofenik (2009) J. Colloid Interface Sci. 337, 456.CrossRefGoogle Scholar
  35. 35.
    C. Klaysom, S. H. Moon, B. P. Ladewig, G. Q. M. Lu, L. Wang (2011) J. Colloid Interface Sci. 363, 431.CrossRefGoogle Scholar
  36. 36.
    M. Y. Kariduraganavar, R. K. Nagarale, A. A. Kittur, S. S. Kulkarni (2006) Desalination 197, 225.CrossRefGoogle Scholar
  37. 37.
    V. K. Shahi, S. K. Thampy, R. Rangarajan (1999) J. Membr. Sci. 158, 77.CrossRefGoogle Scholar
  38. 38.
    W. A. Kaczmarek, B. W. Ninham (1995) Mater. Chem. Phys. 40, 21.CrossRefGoogle Scholar
  39. 39.
    S. M. Hosseini, S. S. Madaeni, A. R. Heidari, A. Amirimehr (2012) Desalination 284, 191.CrossRefGoogle Scholar
  40. 40.
    P. Długolecki, K. Nymeijer, S. Metz, M. Wessling (2008) J. Membr. Sci. 319, 214.CrossRefGoogle Scholar
  41. 41.
    V. K. Shahi, G. S. Trivedi, S. K. Thampy, R. Rangarajan (2003) J. Colloid Interface Sci. 262, 566.CrossRefGoogle Scholar
  42. 42.
    P. V. Vyas, B. G. Shah, G. S. Trivedi, P. Ray, S. K. Adhikary, R. Rangarajan (2001) J. Membr. Sci. 187, 39.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Chemistry, College of ScienceUniversity of TehranTehranIran
  2. 2.Department of Chemistry, Faculty of ScienceArak UniversityArakIran

Personalised recommendations