Advertisement

Journal of Cluster Science

, Volume 27, Issue 1, pp 9–23 | Cite as

New Pt(0) Nanoparticles as Highly Active and Reusable Catalysts in the C1–C3 Alcohol Oxidation and the Room Temperature Dehydrocoupling of Dimethylamine-Borane (DMAB)

  • Esma Erken
  • Handan Pamuk
  • Özlem Karatepe
  • Gaye Başkaya
  • Hakan Sert
  • Orhan Murat Kalfa
  • Fatih ŞenEmail author
Original Paper

Abstract

New Pt(0) nanoparticles were easily and reproducibly prepared by the simultaneous reduction method using 1-butylamine (BA) and tributylamine (TBA) for the first time as capturing ligands at room temperature. X-ray diffraction, X-ray photoelectron microscopy and transmission electron microscopy measurements verify the formation of well-dispersed Pt(0) nanoparticles [~3.63 and ~3.98 nm for catalysts prepared using BA (catalyst I) and TBA (catalyst II), respectively] on an activated carbon surface. The catalytic performances of these nanoparticles in terms of activity, isolability and reusability were investigated for both alcohol oxidation and the dehydrocoupling of dimethylamine-borane (DMAB). These nanoparticles were shown to be as active and reusable heterogeneous catalysts even at room temperature. The prepared catalysts can catalyze the dehydrogenation of DMAB with one of the highest known activities at room temperature and also C1–C3 alcohol oxidation with very high electrochemical activities.

Keywords

Energy storage Alcohol oxidation Nanostructure X-ray diffraction 

Notes

Acknowledgments

The authors would like to thank Dumlupınar University (DPU-BAP-2014-25) and Usak University (2014/MF019) for the partial financial support. The authors gratefully acknowledge DPU-İLTEM and Duzce Central Laboratory (DUBIT).

Supplementary material

10876_2015_892_MOESM1_ESM.docx (185 kb)
Supplementary material 1 (DOCX 184 kb)

References

  1. 1.
    Z. Ozturk, F. Sen, S. Sen, and G. Gokagac (2012). J. Mater. Sci. 47, 8134–8144.CrossRefGoogle Scholar
  2. 2.
    M. Gratzel (2003). Nature 414, 338–344.CrossRefGoogle Scholar
  3. 3.
    F. Sen, S. Sen, and G. Gökağaç (2011). Phys. Chem. Chem. Phys. 13, 1676–1684.CrossRefGoogle Scholar
  4. 4.
    J. Wang, S. Wasmus, and R. F. Savinell (1995). J. Electrochem. Soc. 142, 4218.CrossRefGoogle Scholar
  5. 5.
    N. Fujiwara, K. A. Friedrich, and U. Stimming (1999). J. Electroanal. Chem. 472, 120–125.CrossRefGoogle Scholar
  6. 6.
    A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J. M. Leger, and C. Lamy (1998). J. Electroanal. Chem. 444, 41–53.CrossRefGoogle Scholar
  7. 7.
    W. Vielstich (2003). J. Braz. Chem. Soc. 14, 503–509.CrossRefGoogle Scholar
  8. 8.
    X. Ren, P. Zelenay, S. Thomas, J. Davey, and S. Gottesfeld (2000). J. Power Sources 86, 111.CrossRefGoogle Scholar
  9. 9.
    S. Wasmus and A. Kuver (1999). J. Electroanal. Chem. 461, 14–31.CrossRefGoogle Scholar
  10. 10.
    V. Neburchilov, J. Martin, H. J. Wang, and J. J. Zhang (2007). J. Power Sources 169, 221–238.CrossRefGoogle Scholar
  11. 11.
    B. D. McNicol, D. A. J. Rand, and K. R. Williams (1999). J. Power Sources 83, 15–31.CrossRefGoogle Scholar
  12. 12.
    F. Sen and G. Gökağaç (2014). J. Appl. Electrochem. 44, 199–207.CrossRefGoogle Scholar
  13. 13.
    S. Sen, F. Sen, and G. Gökağaç (2011). Phys. Chem. Chem. Phys. 13, 6784–6792.CrossRefGoogle Scholar
  14. 14.
    J. Datta, S. Sıngh, S. Das, and N. R. Bandyopadhyay (2009). Bull. Mater. Sci. 32, (6), 643.CrossRefGoogle Scholar
  15. 15.
    W. J. Zhou, S. Q. Song, W. Z. Li, Z. H. Zhou, G. Q. Sun, Q. Xin, S. Douvartzides, and P. Tsiakaras (2005). J. Power Sources 140, 50.CrossRefGoogle Scholar
  16. 16.
    S. Sen Gupta and J. Datta (2005). J. Chem. Sci. 117, 337–344.CrossRefGoogle Scholar
  17. 17.
    J. T. Wang, S. Wasmus, and R. F. Savinell (1995). J. Electrochem. Soc. 142, 4218–4224.CrossRefGoogle Scholar
  18. 18.
    D. Cao and S. H. Bergens (2003). J. Power Sources 124, 12–17.CrossRefGoogle Scholar
  19. 19.
    Z. G. Qi and A. Kaufman (2003). J. Power Sources 118, 54–60.CrossRefGoogle Scholar
  20. 20.
    H. Uchida, Y. Mizuno, and M. Watanabe (2002). J. Electrochem. Soc. 149, A682.CrossRefGoogle Scholar
  21. 21.
    W. C. Choi, J. D. Kim, and S. I. Woo (2002). Catal. Today 74, 235.CrossRefGoogle Scholar
  22. 22.
    F. Sen and G. Gökağaç (2007). J. Phys. Chem. C 111, 1467–1473.CrossRefGoogle Scholar
  23. 23.
    F. Sen and G. Gökağaç (2007). J. Phys. Chem. C 111, 5715–5720.CrossRefGoogle Scholar
  24. 24.
    H. Pamuk, B. Aday, F. Sen, and M. Kaya (2015). RSC Adv.. doi: 10.1039/C5RA06441D.Google Scholar
  25. 25.
    P. T. A. Sumodjo, E. J. Silva, and T. Rabochai (1989). J. Electroanal. Chem. 271, 305.CrossRefGoogle Scholar
  26. 26.
    S. Ertan, F. Sen, S. Sen, and G. Gökağaç (2012). J. Nanopart. Res. 14, 922.CrossRefGoogle Scholar
  27. 27.
    F. Sen, G. Gökağaç, and S. Sen (2013). J. Nanopart. Res. 15, 1979.CrossRefGoogle Scholar
  28. 28.
    F. Sen, Y. Karatas, M. Gulcan, and M. Zahmakiran (2014). RSC Adv. 4, 1526.CrossRefGoogle Scholar
  29. 29.
    Z. Liu, X. Y. Ling, X. Su, and J. Y. Lee (2004). J. Phys. Chem. B 108, 8234–8240.CrossRefGoogle Scholar
  30. 30.
    H. Klug and L. Alexander X-ray Diffraction Procedures, 1st ed (Wiley, New York, 1954).Google Scholar
  31. 31.
    T. C. Deivaraj, W. X. Chen, and J. Y. Lee (2003). J. Mater. Chem. 13, 2555.CrossRefGoogle Scholar
  32. 32.
    T. Yonezawa, N. Toshima, C. Wakai, M. Nakahara, M. Nishinaka, T. Tominaga, and H. Nomura (2000). Coll. Surf. A 169, 35–45.CrossRefGoogle Scholar
  33. 33.
    J. Zhao, P. Wang, W. Chen, R. Liu, X. Li, and Q. Nie (2006). J. Power Sources 160, 563–569.CrossRefGoogle Scholar
  34. 34.
    V. S. Bogotzky and Y. B. Vassilyev (1967). Electrochim. Acta 12, 1323.CrossRefGoogle Scholar
  35. 35.
    S. P. Jiang, Z. Liu, H. L. Tang, and M. Pan (2006). Electrochim. Acta 51, 5721–5730.CrossRefGoogle Scholar
  36. 36.
    Z. B. Wang, G. P. Yin, and P. F. Shi (2005). J. Electrochem. Soc. 152, A2406–A2412.CrossRefGoogle Scholar
  37. 37.
    Y. T. Kim and T. Mitani (2006). J. Catal. 238, 394–401.CrossRefGoogle Scholar
  38. 38.
    F. Kadirgan, S. Beyhan, and T. Atilan (2009). Int. J. Hydrog. Energy 34, 4312–4320.CrossRefGoogle Scholar
  39. 39.
    S. Özkar and R. G. Finke (2002). J. Am. Chem. Soc. 124, 5796.CrossRefGoogle Scholar
  40. 40.
    K. J. Laidler Chemical Kinetics, 3rd ed (Benjamin-Cummings, UK, 1997).Google Scholar
  41. 41.
    H. Eyring (1935). J. Chem. Phys. 3, 107.CrossRefGoogle Scholar
  42. 42.
    M. Zahmakiran and S. Ozkar (2009). Inorg. Chem. 48, 8955.CrossRefGoogle Scholar
  43. 43.
    Y. Sun, L. Zhuang, J. Lu, X. Hong, and P. Liu (2007). J. Am. Chem. Soc. 129, 15465.CrossRefGoogle Scholar
  44. 44.
    D. Pun, E. Lobkovsky, and P. J. Chirik (2007). Chem. Commun. 44, 3297.CrossRefGoogle Scholar
  45. 45.
    M. Zahmakiran, M. Tristany, K. Philippot, K. Fajerwerg, S. Ozkar, and B. Chaudret (2010). Chem. Commun. 46, 2938.CrossRefGoogle Scholar
  46. 46.
    C. A. Jaska, K. Temple, A. J. Lough, and I. Manners (2003). J. Am. Chem. Soc. 125, 9424.CrossRefGoogle Scholar
  47. 47.
    T. J. Clark, C. A. Russell, and I. Manners (2006). J. Am. Chem. Soc. 128, 9582.CrossRefGoogle Scholar
  48. 48.
    M. Sloan, T. J. Clark, and I. Manners (2009). Inorg. Chem. 48, 2429.CrossRefGoogle Scholar
  49. 49.
    A. Friendrich, M. Drees, and S. Schneider (2009). Chem. Eur. J. 15, 10339.CrossRefGoogle Scholar
  50. 50.
    R. J. Keaton, J. M. Blacquiere, and R. T. Baker (2007). J. Am. Chem. Soc. 129, 11936.CrossRefGoogle Scholar
  51. 51.
    Y. Kawano, M. Uruichi, M. Shiomi, S. Taki, T. Kawaguchi, T. Kakizawa, and H. Ogino (2009). J. Am. Chem. Soc. 131, 14946.CrossRefGoogle Scholar
  52. 52.
    A. P. M. Robertson, R. Suter, L. Chabanne, G. R. Whittel, and I. Manners (2011). Inorg. Chem. 50, 12680.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Esma Erken
    • 1
  • Handan Pamuk
    • 1
  • Özlem Karatepe
    • 1
  • Gaye Başkaya
    • 1
  • Hakan Sert
    • 2
  • Orhan Murat Kalfa
    • 3
  • Fatih Şen
    • 1
    Email author
  1. 1.Biochemistry DepartmentDumlupinar UniversityKutahyaTurkey
  2. 2.Chemical Engineering DepartmentUsak UniversityUşakTurkey
  3. 3.Chemistry DepartmentDumlupinar UniversityKutahyaTurkey

Personalised recommendations