Journal of Cluster Science

, Volume 26, Issue 2, pp 315–336 | Cite as

Growth and Plasma Functionalization of Carbon Nanotubes

  • Shahzad Hussain
  • Roger Amade
  • Eric Jover
  • Enric Bertran
Review Paper


This review presents recent results about the growth of vertically aligned carbon nanotubes (VACNTs) by plasma enhanced chemical vapor deposition (PECVD) and water assisted CVD. Modification of VACNTs by surface specific plasma treatments as well as by MnO2 electrodeposition, allows the optimization of the CNTs physico-chemical properties. Incorporation of oxygen and nitrogen functional groups by oxygen plasma, water plasma and nitrogen plasma are discussed in detail. The surface modification not only decorates the CNTs with desired functional groups, but also increases their surface area and makes them suitable for electrochemical, biological and environmental applications. In order to study the effects of surface functionalization on the CNTs properties, electrochemical and adsorption/desorption measurements were carried out. Both plasma treatments and manganese oxide electrodeposition improve the specific capacitance of the CNTs. Nanocomposites of CNTs/MnO2 show high specific capacitance values of up to 750 Fg−1. In addition, gas–surface interactions between functionalized and non-functionalized nanotubes, and volatile organic compounds, clearly show enhanced adsorption properties of the surface-modified nanotubes.


Plasma treatment CNTs Surface functionalization 


  1. 1.
    S. Ijima (1991). Lett. Nat. 354, 56–58.CrossRefGoogle Scholar
  2. 2.
    S. Iijima and T. Ichihashi (1993). Nature 363, 603–605.CrossRefGoogle Scholar
  3. 3.
    D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vasquez, and R. Beyers (1993). Nature 363, 605–607.CrossRefGoogle Scholar
  4. 4.
    M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson (1996). Nature 381, 678–680.CrossRefGoogle Scholar
  5. 5.
    A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy (1998). Phys. Rev. B 58, (15), 14013–14019.CrossRefGoogle Scholar
  6. 6.
    B. Peng, M. Locascio, P. Zapol, S. Li, S. L. Mielke, G. C. Schatz, and H. D. Espinosa (2008). Nat. Nanotechnol. 3, 626–631.CrossRefGoogle Scholar
  7. 7.
    P. Kim, L. Shi, A. Majumdar, and P. L. McEuen (2001). Phys. Rev. Lett. 87, 215502.CrossRefGoogle Scholar
  8. 8.
    T. Belin and F. Epron (2005). Mater. Sci. Eng. B 119, 105–118.CrossRefGoogle Scholar
  9. 9.
    E. T. Thostenson, E. T. Z Ren, and T.-W. Chou (2001). Compos. Sci. Technol. 61, 1899–1912.CrossRefGoogle Scholar
  10. 10.
    H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu (2005). Phys. Rev. Lett. 95, 086601.CrossRefGoogle Scholar
  11. 11.
    S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer (1998). Science 280, 1744–1746.CrossRefGoogle Scholar
  12. 12.
    S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerlings, and C. dekker (1997). Nature 386, 474–477.CrossRefGoogle Scholar
  13. 13.
    C. V. Haesendonck, L. Stockman, R. J. M. Vullers, Y. Bruynseraede, L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J. P. Heremans, and C. H. Olk (1997). Surf. Sci. 386, 279–289.CrossRefGoogle Scholar
  14. 14.
    J. C. Charlier (2002). Acc. Chem. Res. 35, 1063–1069.CrossRefGoogle Scholar
  15. 15.
    E. V. Hooijdonk, C. Bittencourt, R. Snyders, and J. F. Colomer (2013). Beilstein J. Nanotechnol. 4, 129–152.CrossRefGoogle Scholar
  16. 16.
    C. N. R. Rao and A. Govindaraj, Nanotubes and Nanowires, 2nd Edition, RSC Nanoscience & Nanotechnology (2011). doi: 10.1039/9781849732840-00001.
  17. 17.
    M. Kumar and Y. Ando (2010). J. Nanosci. Nanotechnol. 10, 3739–3758.CrossRefGoogle Scholar
  18. 18.
    R. T. K. Baker and D. J. C. Yates, Filamentous Carbon Formation Over Iron Surfaces (1983). doi: 10.1021/bk-1983-0202.ch001. ISBN13: 9780841207455, eISBN: 9780841209848.
  19. 19.
    A. Gorbunov, O. Jost, W. Pompe, and A. Graff (2002). Carbon 40, 113–118.CrossRefGoogle Scholar
  20. 20.
    E. F. Kukovitsky, S. G. Lvov, and N. A. Sainov (2000). Chem. Phys. Lett. 317, 65–70.CrossRefGoogle Scholar
  21. 21.
    Y. Chen and J. Zhang (2011). Carbon 49, 3316–3324.CrossRefGoogle Scholar
  22. 22.
    S. Hofmann, C. Ducati, and J. Robertson (2003). Appl. Phys. Lett. 83, (1), 135–137.CrossRefGoogle Scholar
  23. 23.
    F. Javier del Campo, J. García-Céspedes, F. Xavier Muñoz, and E. Bertran (2008). Electrochem. Commun. 10, 1242–1245.CrossRefGoogle Scholar
  24. 24.
    M. S. Bell, K. B. K. Teo, R. G. Lacerda, W. I. Milne, D. B. Hash, and M. Meyyappan (2006). Pure Appl. Chem. 78, (6), 1117–1125.CrossRefGoogle Scholar
  25. 25.
    R. Amade, S. Hussain, I. R. Ocaña, and E. Bertran (2014). J. Environ. Eng. Ecol. Sci. 3, 1–7.CrossRefGoogle Scholar
  26. 26.
    S. Hussain, R. Amade, H. Moreno, and E. Bertran (2014). Diam. Relat. Mater. 49, 55–61.CrossRefGoogle Scholar
  27. 27.
    H. Lim, Z. Luo, Z. Shen, and J. Lin (2010). Nanoscale Res. Lett. 5, 1377–1386.CrossRefGoogle Scholar
  28. 28.
    V. I. Merkulov, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson (2002). Chem. Phys. Lett. 361, 492–498.CrossRefGoogle Scholar
  29. 29.
    Z. Luo, S. Lim, Y. You, J. Miao, H. Gong, J. Zhang, S. Wang, J. Lin, and Z. Shen (2008). Nanotechnology 19, 255607.CrossRefGoogle Scholar
  30. 30.
    A. Gohier, T. M. Minea, M. A. Djouadi, and A. Granier (2007). J. Appl. Phys. 101, 054317.CrossRefGoogle Scholar
  31. 31.
    S. K. Srivastava, V. D. Vankar, and V. Kumar (2006). Thin Solid Films 515, 1552–1560.CrossRefGoogle Scholar
  32. 32.
    K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima (2004). Science 306, 1362–1364.CrossRefGoogle Scholar
  33. 33.
    G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J. P. McVittie, J. Gibbons, and H. Dai (2005). PNAS 102, (45), 16141–16145.CrossRefGoogle Scholar
  34. 34.
    Y. Kim, W. Song, S. Y. Lee, S. Shrestha, C. Jeon, W. C. Choi, M. Kim, and C. Y. Park (2010). Jpn. J. Appl. Phys. 49, 085101.CrossRefGoogle Scholar
  35. 35.
    X. Yang, L. Yuan, V. K. Peterson, Y. Yin, A. I. Minett, and A. T. Harris (2011). J. Phys. Chem. C 115, 14093–14097.CrossRefGoogle Scholar
  36. 36.
    C. Mattevi, C. T. Wirth, S. Hofmann, R. Blume, M. Cantoro, C. Ducati, C. Cepek, A. Knop-Gericke, S. Milne, C. Castellarin-Cudia, S. Dolafi, A. Goldoni, R. Schloegl, and J. Robertson (2008). J. Phys. Chem. C 112, 12207–12213.CrossRefGoogle Scholar
  37. 37.
    E. Teblum, Y. Gofer, C. L. Pint, and G. D. Nessim (2012). J. Phys. Chem. C 116, 24522–24528.CrossRefGoogle Scholar
  38. 38.
    K. Xie, M. Muhler, and W. Xia (2013). Ind. Eng. Chem. Res. 52, (39), 14081–14088. doi: 10.1021/ie401829e.CrossRefGoogle Scholar
  39. 39.
    S. Hussain, R. Amade, and E. Bertran (2014). Mater. Chem. Phys. 148, 914–922.CrossRefGoogle Scholar
  40. 40.
    J. J. Nguyen, T. L. Bougher, P. P. S. S. Abadi, and A. Sharma (2013). J. Micro Nano-Manuf. 1, 014501–014505.CrossRefGoogle Scholar
  41. 41.
    S. Hussain, R. Amade, E. Jover, and E. Bertran (2012). Nanotechnology 23, 385604.CrossRefGoogle Scholar
  42. 42.
    J. E. Fischer, in Y. Gogotsi (ed.), Carbon Nanotubes: Structure and Properties Nanotubes and Nanofibers (Taylor Francis, Boca Raton, FL, 2006), p. 36.Google Scholar
  43. 43.
    S. Hussain, R. Amade, E. Jover, and E. Bertran (2013). Sci. World J. Article ID 832581, 8.Google Scholar
  44. 44.
    T. Xu, J. Yang, J. Liu, and Q. Fu (2007). Appl. Surf. Sci. 253, 8945–8951.CrossRefGoogle Scholar
  45. 45.
    Y. Yu, C. Cui, W. Qian, Q. Xie, C. Zheng, C. Kong, and F. Wei (2013). Asia-Pac. J. Chem. Eng. 8, 234–245.CrossRefGoogle Scholar
  46. 46.
    C. Chen, B. Liang, A. Ogino, X. Wang, and M. Nagatsu (2009). J. Phys. Chem. C 113, 7659–7665.CrossRefGoogle Scholar
  47. 47.
    E. Saito, E. F. Antunes, H. Zanin, F. R. Marciano, A. O. Lobo, V. J. Trava-Airoldi, and E. J. Corata (2014). J. Electrochem. Soc. 161, (5), H321–H325.CrossRefGoogle Scholar
  48. 48.
    L. Vandsburger, S. Coulombe, and J. L. Meunier (2013). J. Phys. D Appl. Phys. 46, 485301.CrossRefGoogle Scholar
  49. 49.
    B. Zhao, L. Zhang, X. Wang, and J. Yang (2012). Carbon 50, 2710–2716.CrossRefGoogle Scholar
  50. 50.
    Z. Zanolli, R. Leghrib, A. Felten, J.-J. Pireaux, E. Llobet, and J.-C. Charlier (2011). ACS Nano. 5, 4592–4599.CrossRefGoogle Scholar
  51. 51.
    H. Muguruma, Y. Shibayama, and Y. Matsui (2008). Biosens. Bioelectron. 23, 827–832.CrossRefGoogle Scholar
  52. 52.
    C. Chen, A. Ogino, X. Wang, and M. Nagatsu (2010). Appl. Phys. Lett. 96, 131504.CrossRefGoogle Scholar
  53. 53.
    K. Peng, L. Q. Liu, H. Li, H. Meyer, and Z. Zhang (2011). Carbon 49, 70–76.CrossRefGoogle Scholar
  54. 54.
    S. Lee, J.-W. Peng, and C. H. Liu (2008). Carbon 46, 2124–2132.CrossRefGoogle Scholar
  55. 55.
    Z. Hou, B. Cai, H. Liu, and D. Xu (2008). Carbon 46, 405–413.CrossRefGoogle Scholar
  56. 56.
    D. Hulicova-Jurcakova, M. Seredych, G. Q. Lu, and T. J. Bandosz (2009). Adv. Funct. Mater. 19, 438–447.CrossRefGoogle Scholar
  57. 57.
    L. Li, E. Liu, H. Shen, Y. Yang, Z. Huang, X. Xiang, and Y. Tian (2011). J. Solid State Chem. 15, 175–182.Google Scholar
  58. 58.
    S. Hussain, R. Amade, E. Jover, and E. Bertran (2013). J. Mater. Sci. 48, 7620–7628.CrossRefGoogle Scholar
  59. 59.
    W. Shen, Z. Li, and Y. Liu (2008). Recent Pat. Chem. Eng. 1, 27–40.CrossRefGoogle Scholar
  60. 60.
    C. Jones and E. Sammann (1990). Carbon 28, (4), 509–514.CrossRefGoogle Scholar
  61. 61.
    H. Wang, R. Cote, G. Faubert, D. Guay, and J. P. Dodelet (1999). J. Phys. Chem. B 103, 2042–2049.CrossRefGoogle Scholar
  62. 62.
    A. Toth, K. V. Voitko, O. Bakalinska, G. P. Prykhodko, I. Bertoti, A. Martínez-Alonso, J. M. D. Tascon, V. M. Gunko, and K. Laszlo (2012). Carbon 50, 577–585.CrossRefGoogle Scholar
  63. 63.
    J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, and K. M. Thomas (1995). Carbon 33, 1641–1653.CrossRefGoogle Scholar
  64. 64.
    S. Bhattacharyya, J. Hong, and G. Turban (1998). J. Appl. Phys. 83, 3917–3919.CrossRefGoogle Scholar
  65. 65.
    S. Biniak, G. Szymanski, J. Siedlewski, and A. Swiatkowski (1997). Carbon 35, 1799–1810.CrossRefGoogle Scholar
  66. 66.
    J. Yu, T. Ma, and S. Liu (2011). Phys. Chem. Chem. Phys. 13, 3491–3501.CrossRefGoogle Scholar
  67. 67.
    Y. Yu, J. C. Yu, J.-G. Yu, Y.-C. Kwok, Y.-K. Che, J.-C. Zhao, L. Ding, W.-K. Ge, and P.-K. Wong (2005). Appl. Catal. A Gen. 289, 186–196.CrossRefGoogle Scholar
  68. 68.
    Z. Wen, S. Ci, S. Mao, S. Cui, G. Lu, K. Yu, S. Luo, Z. He, and J. Chen (2013). J. Power Sources 234, 100–106.CrossRefGoogle Scholar
  69. 69.
    P. Wu, N. Du, H. Zhang, J. Yu, and D. Yang (2010). J. Phys. Chem. C 114, 22535–22538.CrossRefGoogle Scholar
  70. 70.
    S. M. Abbas, S. T. Hussain, S. Ali, N. Ahmad, N. Ali, and S. Abbas (2013). J. Mater. Sci. 48, 5429–5436.CrossRefGoogle Scholar
  71. 71.
    J. S. Park, J. M. Lee, S. K. Hwang, S. H. Lee, H.-J. Lee, B. R. Lee, H. I. Park, J.-S. Kim, S. Yoo, M. H. Song, and S. O. Kim (2012). J. Mater. Chem. 22, 12695–12700.CrossRefGoogle Scholar
  72. 72.
    A. D. Su, X. Zhang, A. Rinaldi, S. T. Nguyen, H. Liu, Z. Lei, L. Lu, and H. M. Duong (2013). Chem. Phys. Lett. 561–562, 68–73.CrossRefGoogle Scholar
  73. 73.
    H. Karimi-Maleh, P. Biparva, and M. Hatami (2013). Biosens. Bioelectron. 48, 270–275.CrossRefGoogle Scholar
  74. 74.
    B. E. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum Publishers, NewYork, NY, 1999).CrossRefGoogle Scholar
  75. 75.
    Y. Hou, Y. Cheng, T. Hobson, and J. Liu (2010). NanoLetters 10, 2727–2733.CrossRefGoogle Scholar
  76. 76.
    C.-T. Hsieh and H. Teng (2002). Carbon 40, (5), 667–674.CrossRefGoogle Scholar
  77. 77.
    X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, and Z. Jia (2003). Chem. Phys. Lett. 376, 154–158.CrossRefGoogle Scholar
  78. 78.
    M. Kah, X. Zhang, M. T. Jonker, and T. Hofmann (2011). Environ. Sci. Technol. 45, 6011–6017.CrossRefGoogle Scholar
  79. 79.
    K. Yang, W. Wu, Q. Jing, and L. Zhu (2008). Environ. Sci. Technol. 42, 7931–7936.CrossRefGoogle Scholar
  80. 80.
    D. Lin and B. Xingt (2008). Environ. Sci. Technol. 42, 7254–7259.CrossRefGoogle Scholar
  81. 81.
    K. Yang, W. Wu, Q. Jing, W. Jiang, and B. Xing (2010). Environ. Sci. Technol. 44, 3021–3027.CrossRefGoogle Scholar
  82. 82.
    R. Amade, E. Jover, B. Caglar, T. Mutlu, and E. Bertran (2011). J. Power Sources 196, 5779–5783.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shahzad Hussain
    • 1
  • Roger Amade
    • 1
  • Eric Jover
    • 1
  • Enric Bertran
    • 1
  1. 1.FEMAN Group, IN2UB, Dept. Fisica Aplicada i OpticaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations