Journal of Cluster Science

, Volume 26, Issue 2, pp 375–388 | Cite as

Syntheses, Structures and Antioxidant Activities of Fullerenols: Knowledge Learned at the Atomistic Level

  • Zhenzhen Wang
  • Shukuang Wang
  • Zhanghui Lu
  • Xingfa Gao
Review Paper


Fullerenol nanoparticles have intriguing potentials in biomedical applications. However, the structures, mechanisms of syntheses and mechanisms of antioxidant activities of fullerenols at the atomistic level, which substantialize their properties and applications, remain opened questions. Here, we review the syntheses, structures and antioxidant activities of fullerenols. Especially, we focus on the knowledge at the atomistic level. Experimentally, fullerenols can be synthesized using oxidation reactions in either acidic conditions or alkaline conditions. The latter reactions yield fullerenols with high hydroxyl numbers and better water solubility. For fullerenol structures, a precision structural model has been recently proposed for C60 fullerenols, which explain the experimentally-observed radical anion properties and pH-dependent infrared spectroscopic properties. Calculations have suggested that the most thermodynamically stable structures of many fullerenols have hydroxyls located aggregately in islands on the fullerene cages, although the most stable configuration of C60(OH)24 has hydroxyls distributed on C60 equator. Two different ·OH-scavenging mechanisms are possible for fullerenols. Fullerenols with low degrees of hydroxylation prefer the ·OH addition mechanism, whereas those with high degrees of hydroxylation prefer the hydrogen abstraction mechanism. The O 2 ∙− -scavenging mechanism is related to redox potentials, charges and H-bond nets of the fullerenols.


Fullerenols Synthesis Structure Reaction mechanism Antioxidant activity 



This work was supported by the CAS Hundreds Elite Program, NSFC Project (21373226), MOST 973 program (2012CB934001). ZW was partially supported by visiting Project fund at home and abroad of postgraduate in Jiangxi Normal University.


  1. 1.
    L. Xiao, H. Takada, X. H. Gan, and N. Miwa (2006). Bioorg. Med. Chem. Lett. 16, 1590.CrossRefGoogle Scholar
  2. 2.
    Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, et al. (2003). J. Am. Chem. Soc. 125, 12803.CrossRefGoogle Scholar
  3. 3.
    L. Y. Chiang, J. W. Swirczewski, C. S. Hsu, S. K. Chowdhury, S. Cameron, and K. Creegan (1992). J. Chem. Soc. Chem. Commun. 114, 1791.CrossRefGoogle Scholar
  4. 4.
    J. Li, A. Takeuchi, M. Ozawa, X. H. Li, K. Saigo, and K. Kitazawa (1993). J. Chem. Soc. Chem. Commun. 128, 1784.CrossRefGoogle Scholar
  5. 5.
    K. Kokubo, S. Shirakawa, N. Kobayashi, H. Aoshima, and T. Oshima (2010). Nano Res. 4, 204.CrossRefGoogle Scholar
  6. 6.
    L. Y. Chiang, F. J. Lu, and J. T. Lin (1995). J Chem Soc. Chem. Commun. 1995, 1283. doi: 10.1039/C39950001283.Google Scholar
  7. 7.
    J. J. Yin, F. Lao, P. P. Fu, W. G. Wamer, Y. L. Zhao, P. C. Wang, et al. (2009). Biomaterials 30, 611.CrossRefGoogle Scholar
  8. 8.
    S. M. Mirkov, A. N. Djordjevic, N. L. Andric, S. A. Andric, T. S. Kostic, G. M. Bogdanovic, et al. (2004). Nitric. Oxide-Biol. Chem. 11, 201.CrossRefGoogle Scholar
  9. 9.
    M. P. Rade Injac, and Borut Strukelj (vol. 1028, Springer, New York, 2013), pp. 75.Google Scholar
  10. 10.
    J. Grebowski, A. Krokosz, and M. Puchala (2013). BBA-Biomembranes 1828, 2007.CrossRefGoogle Scholar
  11. 11.
    X. Q. Cai, H. Q. Jia, Z. B. Liu, B. Hou, C. Luo, Z. H. Feng, et al. (2008). J. Neurosci. Res. 86, 3622.CrossRefGoogle Scholar
  12. 12.
    Aleksandar Dordevic and Gordana Bogdanovic (2008). Arch. Onco. 16, 42.CrossRefGoogle Scholar
  13. 13.
    J. Grebowski, P. Kazmierska, and A. Krokosz (2013). Biomed. Res. Int. doi: 10.1155/2013/751913.Google Scholar
  14. 14.
    Z. Wang, X. Chang, Z. Lu, M. Gu, Y. Zhao, and X. Gao (2014). Chem. Sci. 5, 2940.CrossRefGoogle Scholar
  15. 15.
    L. Y. Chiang, R. B. Upasani, J. W. Swirczewski, and S. Soled (1993). J. Am. Chem. Soc. 115, 5453.CrossRefGoogle Scholar
  16. 16.
    L. Y. Chiang, L. Y. Wang, J. W. Swirczewski, S. Soled, and S. Cameron (1994). J. Org. Chem. 59, 3960.CrossRefGoogle Scholar
  17. 17.
    L. Y. Chiang, R. B. Upasani, and J. W. Swirczewski (1992). J. Am. Chem. Soc. 114, 10154.CrossRefGoogle Scholar
  18. 18.
    L. Y. Chiang, J. B. Bhonsle, L. Y. Wang, S. F. Shu, T. M. Chang, and J. R. Hwu (1996). Tetrahedron 52, 4963.CrossRefGoogle Scholar
  19. 19.
    A. Arrais and E. Diana (2003). Fuller. Nanotub. Car. N. 11, 35.CrossRefGoogle Scholar
  20. 20.
    P. Zhang, H. L. Pan, D. F. Liu, Z. X. Guo, F. S. Zhang, and D. B. Zhu (2003). Synth. Commun. 33, 2469.CrossRefGoogle Scholar
  21. 21.
    S. Wang, P. He, J. M. Zhang, H. Jiang, and S. Z. Zhu (2005). Synth. Commun. 35, 1803.CrossRefGoogle Scholar
  22. 22.
    L. O. Husebo, B. Sitharaman, K. Furukawa, T. Kato, and L. J. Wilson (2004). J. Am. Chem. Soc. 126, 12055.CrossRefGoogle Scholar
  23. 23.
    F. F. Wang, N. Li, D. Tian, G. F. Xia, and N. Xiao (2010). Acs Nano. 4, 5565.CrossRefGoogle Scholar
  24. 24.
    K. Kokubo, K. Matsubayashi, H. Tategaki, H. Takada, and T. Oshima (2008). Acs Nano. 2, 327.CrossRefGoogle Scholar
  25. 25.
    G. Zhang, Y. Liu, D. H. Liang, L. B. Gan, and Y. Li (2010). Angew. Chem. Int. Edit. 49, 5293.CrossRefGoogle Scholar
  26. 26.
    A. Djordjevic, M. Vojinovic-Miloradov, N. Petranovic, A. Devecerski, D. Lazar, and B. Ribar (1998). Fuller. Sci. Technol. 6, 689.CrossRefGoogle Scholar
  27. 27.
    P. A. Troshin, A. S. Astakhova, and R. N. Lyubovskaya (2005). Fuller. Nanotub. Car. N. 13, 331.CrossRefGoogle Scholar
  28. 28.
    F. Jiao, Y. Liu, Y. Qu, W. Li, G. Q. Zhou, C. C. Ge, et al. (2010). Carbon 48, 2231.CrossRefGoogle Scholar
  29. 29.
    J. Meng, X. J. Liang, X. Y. Chen, and Y. L. Zhao (2013). Integr. Biol. 5, 43.CrossRefGoogle Scholar
  30. 30.
    Z. Markovic and V. Trajkovic (2008). Biomaterials 29, 3561.CrossRefGoogle Scholar
  31. 31.
    Y. Liu, F. Jiao, Y. Qiu, W. Li, F. Lao, G. Q. Zhou, et al. (2009). Biomaterials 30, 3934.CrossRefGoogle Scholar
  32. 32.
    X. J. Liang, H. Meng, Y. Z. Wang, H. Y. He, J. Meng, J. Lu, et al. (2010). Proc. Natl. Acad. Sci. U S A. 107, 7449.CrossRefGoogle Scholar
  33. 33.
    G. M. Xing, J. Zhang, Y. L. Zhao, J. Tang, B. Zhang, X. F. Gao, et al. (2004). J. Phys. Chem. B. 108, 11473.CrossRefGoogle Scholar
  34. 34.
    J. Li, M. Y. Zhang, B. Y. Sun, G. M. Xing, Y. Song, H. L. Guo, et al. (2012). Carbon 50, 460.CrossRefGoogle Scholar
  35. 35.
    A. Lundin, I. Panas, and E. Ahlbergt (2007). J. Phys. Chem. A. 111, 9080.CrossRefGoogle Scholar
  36. 36.
    A. Hirsch. Fullerenes and Related Structures (Springer Verlag, Berlin, Heidelberg, 1999), pp. 10–12.Google Scholar
  37. 37.
    A. Lundin, I. Panas, and E. Ahlberg (2009). J. Phys. Chem. A. 113, 282.CrossRefGoogle Scholar
  38. 38.
    S. Wang, P. He, J. M. Zhang, H. Jiang, and S. Z. Zhu (2005). Synth. Commun. 35, 1803.CrossRefGoogle Scholar
  39. 39.
    K. D. Pickering and M. R. Wiesner (2005). Environ. Sci. Technol. 39, 1359.CrossRefGoogle Scholar
  40. 40.
    V. Kojic, D. Jakimov, G. Bogdanovic, and A. Dordevic (2005). Curr. Res. Adv. Mater. Proc. 494, 543.Google Scholar
  41. 41.
    A. Isakovic, Z. Markovic, B. Todorovic-Markovic, N. Nikolic, S. Vranjes-Djuric, M. Mirkovic, et al. (2006). Toxicol. Sci. 91, 173.CrossRefGoogle Scholar
  42. 42.
    V. D. Milic, A. Djordjevic, S. Dobric, R. Injac, D. Vuckovic, K. Stankov, et al. (2006). Recent Dev. Adv. Mater Process. 518, 525.Google Scholar
  43. 43.
    E. E. Fileti, R. Rivelino, F. D. Mota, and T. Malaspina (2008). Nanotechnology 19, 365703.CrossRefGoogle Scholar
  44. 44.
    X. J. Li, X. H. Yang, L. M. Song, H. J. Ren, and T. Z. Tao (2013). Structural Chemistry 24, 1185.CrossRefGoogle Scholar
  45. 45.
    B. C. Wang and C. Y. Cheng (1997). J. Mol Struc-Theochem. 391, 179.CrossRefGoogle Scholar
  46. 46.
    Z. Slanina, X. Zhao, L. Y. Chiang, and E. Osawa (1999). Int. J. Quantum Chem. 74, 343.CrossRefGoogle Scholar
  47. 47.
    B. C. Wang, H. W. Wang, H. C. Tso, T. L. Chen, and Y. M. Chou (2002). J. Mol Struc-Theochem. 581, 177.CrossRefGoogle Scholar
  48. 48.
    J. G. Rodriguez-Zavala and R. A. Guirado-Lopez (2004). Phys. Rev. B. 69, 075411.CrossRefGoogle Scholar
  49. 49.
    J. G. Rodriguez-Zavala and R. A. Guirado-Lopez (2006). J. Phys. Chem. A. 110, 9459.CrossRefGoogle Scholar
  50. 50.
    R. A. Guirado-Lopez and M. E. Rincon (2006). J. Chem. Phys. 125, 154312.CrossRefGoogle Scholar
  51. 51.
    H. Q. He, L. M. Zheng, P. Jin, and M. H. Yang (2011). Comput Theor. Chem. 974, 16.CrossRefGoogle Scholar
  52. 52.
    F. Lao, W. Li, D. Han, Y. Qu, Y. Liu, Y. L. Zhao, et al. (2009). Nanotechnology 20, 225103.CrossRefGoogle Scholar
  53. 53.
    P. Pacher, J. S. Beckman, and L. Liaudet (2007). Physiol. Rev. 87, 315.CrossRefGoogle Scholar
  54. 54.
    L. Xiao, H. Aoshima, Y. Saitoh, and N. Miwa (2011). Free Radical Biol. Med. 51, 1376.CrossRefGoogle Scholar
  55. 55.
    I. Rade, R. Natasa, G. Biljana, D. Aleksandar, and S. Borut (2008). Afr. J. Biotechnol. 7, 4940.Google Scholar
  56. 56.
    H. S. Lai, W. J. Chen, and L. Y. Chiang (2000). World J. Surg. 24, 450.CrossRefGoogle Scholar
  57. 57.
    J. Y. Xu, Y. Y. Su, J. S. Cheng, S. X. Li, R. L. Liu, W. X. Li, et al. (2010). Carbon 48, 1388.CrossRefGoogle Scholar
  58. 58.
    L. L. Dugan, V. M. G. Bruno, S. M. Amagasu, and R. G. Giffard (1995). J. Neurosci. 15, 4545.Google Scholar
  59. 59.
    L. L. Dugan, J. K. Gabrielsen, S. P. Yu, T. S. Lin, and D. W. Choi (1996). Neurobiol. Dis. 3, 129.CrossRefGoogle Scholar
  60. 60.
    P. Menna, O. G. Paz, M. Chello, E. Covino, E. Salvatorelli, and G. Minotti (2012). Expert Opin. Drug Saf. 11, S21.CrossRefGoogle Scholar
  61. 61.
    R. Injac, M. Perse, M. Cerne, N. Potocnik, N. Radic, B. Govedarica, et al. (2009). Biomaterials 30, 1184.CrossRefGoogle Scholar
  62. 62.
    V. M. Torres, B. Srdjenovic, V. Jacevic, V. D. Simic, A. Djordjevic, and A. L. Simplicio (2010). Pharmacol. Rep. 62, 707.CrossRefGoogle Scholar
  63. 63.
    B. Srdjenovic, V. Milic-Torres, N. Grujic, K. Stankov, A. Djordjevic, and V. Vasovic (2010). Toxicol. Mech. Method. 20, 298.CrossRefGoogle Scholar
  64. 64.
    S. Kato, H. Aoshima, Y. Saitoh, and N. Miwa (2009). Bioorg. Med. Chem. Lett. 19, 5293.CrossRefGoogle Scholar
  65. 65.
    J. Grebowski, A. Krokosz, A. Konarska, M. Wolszczak, and M. Puchala (2014). Radiat. Phys. Chem. 103, 146.CrossRefGoogle Scholar
  66. 66.
    A. Djordjevic, J. Canadanovic-Brunet, M. Vojinovic-Miloradov, and G. Bogdanovic (2005). Oxid. Commun. 27, 806.Google Scholar
  67. 67.
    H. Ueno, S. Yamakura, R. S. Arastoo, T. Oshima, and K. Kokubo (2014). J. Nanomater. 2014, 7.Google Scholar
  68. 68.
    G.-F. Liu, M. Filipović, I. Ivanović-Burmazović, F. Beuerle, P. Witte, and A. Hirsch (2008). Ange. Chem. Inter. Edit. 47, 3991.CrossRefGoogle Scholar
  69. 69.
    S. Osuna, M. Swart, and M. Sola (2010). Chem. Eur. J. 16, 3207.CrossRefGoogle Scholar
  70. 70.
    G. M. Xing, H. Yuan, R. He, X. Y. Gao, L. Jing, F. Zhao, et al. (2008). J. Phys. Chem. B. 112, 6288.CrossRefGoogle Scholar
  71. 71.
    J. X. Wang, C. Y. Chen, B. Li, H. W. Yu, Y. L. Zhao, J. Sun, et al. (2006). Biochem. Pharmacol. 71, 872.CrossRefGoogle Scholar
  72. 72.
    Z. Y. Chen, Y. Liu, B. Y. Sun, H. Li, J. Q. Dong, L. J. Zhang, et al. (2014). Small 10, 2362.CrossRefGoogle Scholar
  73. 73.
    H. Meng, G. M. Xing, B. Y. Sun, F. Zhao, H. Lei, W. Li, et al. (2010). Acs Nano. 4, 2773.CrossRefGoogle Scholar
  74. 74.
    H. Meng, G. M. Xing, E. Blanco, Y. Song, L. N. Zhao, B. Y. Sun, et al. (2012). Nanomed-Nanotechnol. 8, 136.CrossRefGoogle Scholar
  75. 75.
    X. H. Yin, L. N. Zhao, S. G. Kang, J. Pan, Y. Song, M. Y. Zhang, et al. (2013). Nanoscale 5, 7341.CrossRefGoogle Scholar
  76. 76.
    S. G. Kang, G. Q. Zhou, P. Yang, Y. Liu, B. Y. Sun, T. Huynh, et al. (2012). Proc. Natl. Acad. Sci. U S A. 109, 15431.CrossRefGoogle Scholar
  77. 77.
    S. G. Kang, R. Araya-Secchi, D. Q. Wang, B. Wang, T. Huynh, and R. H. Zhou (2014). Sci. Rep-UK 4, 4775.Google Scholar
  78. 78.
    S. G. Kang, T. Huynh, and R. H. Zhou (2012). Sci. Rep-UK 2, 957.Google Scholar
  79. 79.
    S. G. Kang, T. Huynh, and R. H. Zhou (2013). Nanoscale 5, 2703.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Jiangxi Inorganic Membrane Materials Engineering Research Centre, College of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchangChina
  2. 2.CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics, Chinese Academy of SciencesBeijingChina
  3. 3.Department of PhysicsOcean University of ChinaQingdaoChina

Personalised recommendations