Advertisement

Journal of Cluster Science

, Volume 26, Issue 2, pp 337–346 | Cite as

A Kinetic and AFM Study of the Electrodeposition of Palladium Nanoclusters onto Highly Oriented Pyrolytic Graphite (HOPG)

  • L. H. Mendoza-HuizarEmail author
  • D. Garrido-Márquez
  • C. H. Rios-Reyes
  • M. Rivera
  • E. García-Sánchez
  • C. Galán-Vidal
Original Paper

Abstract

In the present work we have carried out a kinetic and morphological study of the palladium electrodeposition onto highly oriented pyrolitic graphite electrode from an aqueous solution [0.001 M PdCl2 + 1 M NH4Cl (pH 7)]. From the potentiostatic study were calculated the diffusion coefficient (3.2 × 10−6 cm2 s−1), the number of active nucleation sites (N 0), the nucleation rate (A) and the rate constant of the proton reduction process (k PR). A, N 0 and k PR values were potential dependent and they increased with an augment in the applied overpotential. At higher overpotential, it is possible to induce the formation of small Pd clusters with 5 nm in height and an average size of 20–30 nm in diameter.

Keywords

Palladium Cluster Electrodeposition Kinetic 

Notes

Acknowledgments

C.H.R.R. is grateful for a postdoctoral fellowship from CONACYT (290616). We gratefully acknowledge financial support from CONACyT projects INFR-2014-227999 and APOY-COMPL-2008 No. 91261 and to the Universidad Autónoma del Estado de Hidalgo in projects PIFI 2008-13M8U0017T-04-01 y PIFI-2009-13MSU0017T-04-01. M.R. acknowledges I.Q. Mario Monroy for the use of the microscopy facilities.

References

  1. 1.
    M. Yamauchi, H. Kobayashi, and H. Kitagawa (2009). Chem. Phys. Chem. 10, 2566.Google Scholar
  2. 2.
    C. Bianchini and P. K. Shen (2009). Chem. Rev. 109, 4183.CrossRefGoogle Scholar
  3. 3.
    X. W. Yu, P. G. Pickup, and J. Power (2008). Sources. 182, 124.CrossRefGoogle Scholar
  4. 4.
    S. A. Miscoria, G. D. Barrera, and G. A. Rivas (2002). Electroanalysis 14, 981.CrossRefGoogle Scholar
  5. 5.
    M. Rajkumar, C. P. Hong, and S. M. Chen (2013). Int. J. Electrochem. Sci. 8, 5262.Google Scholar
  6. 6.
    G. A. Somorjai Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994), pp. 1–18.Google Scholar
  7. 7.
    J. A. Rodriguez (1996). Surf. Sci. Rep. 24, 223.CrossRefGoogle Scholar
  8. 8.
    F. Yang, S. C. Kung, M. Cheng, J. C. Hemminger, and R. M. Penner (2010). ACS Nano 4, 5233.CrossRefGoogle Scholar
  9. 9.
    P. Diao, D. F. Zhang, M. Guo, and Q. Zhang (2007). J. Catal. 250, 247.CrossRefGoogle Scholar
  10. 10.
    L. A. Kibler, M. Kleinert, R. Randler, and D. M. Kolb (1999). Surf. Sci. 443, 19.CrossRefGoogle Scholar
  11. 11.
    D. Xu, X. Yan, P. Diao, and P. Yin (2014). J. Phys. Chem. C 118, 9758.CrossRefGoogle Scholar
  12. 12.
    J. O. Besenhard, U. Krebber, J. K. H. Hober, N. Kanani, and H. Meyer (1989). J. Electrochem. Soc. 136, 3608.CrossRefGoogle Scholar
  13. 13.
    A. Satire, M. Phaner, L. Pone, and G. N. Sauvion (1993). Appl. Surf. Sci. 70–71, 402.Google Scholar
  14. 14.
    S. Granjeaud, K. Yckache, M. Dayez, A. Humbert, C. Chapon, and C. R. Henry (1993). Microsc. Microanal. Microstruct. 4, 409.CrossRefGoogle Scholar
  15. 15.
    A. Humbert, M. Dyez, S. Graneaud, P. Ricci, C. Chapon, and C. R. Henry (1991). J. Vac. SCi. Technol. B9, 804.CrossRefGoogle Scholar
  16. 16.
    F. J. C. S. Aires, P. Sautet, G. Fuchs, J. L. Rousset, and P. Melinon (1993). Microsc. Microanal. Microstruct. 4, 441.CrossRefGoogle Scholar
  17. 17.
    R. Erlandsson, M. Eriksson, L. Olsson, U. Helmersson, I. Lundslrom, and L. G. Pertersson (1991). J. Vac. Sci. Technol. B9, 825.CrossRefGoogle Scholar
  18. 18.
    K. Murakami, K. Naoi, Yahikozawa, and Y. Takasu (1994). J. Electrochem. Soc. 141, 2511.CrossRefGoogle Scholar
  19. 19.
    X. Q. Tong, M. Aindow, and J. P. G. Fan (1995). J. Electroanal. Chem. 395, 117.CrossRefGoogle Scholar
  20. 20.
    A. M. Polcaro and S. Palmas (1991). Electrochim. Acta 36, 921.CrossRefGoogle Scholar
  21. 21.
    R. LePenven, W. Levason, and D. Pletcher (1990). J. Appl. Electrochem. 20, 399.CrossRefGoogle Scholar
  22. 22.
    C. K. Lai, Y. Y. Wang, and C. C. Wan (1992). J. Electroanal. Chem. 322, 267.CrossRefGoogle Scholar
  23. 23.
    M. E. Quayum, S. Ye, and K. Uosaki (2002). J. Electroanal. Chem. 520, 126.CrossRefGoogle Scholar
  24. 24.
    A. L. N. Pinheiro, M. S. Zei, M. F. Luo, and G. Ertl (2006). Surf. Sci. 600, 641.CrossRefGoogle Scholar
  25. 25.
    H. Duncan and A. Lasia (2007). Electrochim. Acta 52, 6195.CrossRefGoogle Scholar
  26. 26.
    M. Baldauf and D. M. Kolb (1996). J. Phys. Chem. 100, 11375.CrossRefGoogle Scholar
  27. 27.
    H. Naohara, S. Ye, and K. Uosaki (1998). J. Phys. Chem. B 102, 4366.CrossRefGoogle Scholar
  28. 28.
    H. Naohara, S. Ye, and K. Uosaki (1999). J. Electroanal. Chem. 473, 2.CrossRefGoogle Scholar
  29. 29.
    B. K. Kim, D. Seo, J. Y. Lee, H. Song, and J. Kwak (2010). Electrochem. Commun. 12, 1442.CrossRefGoogle Scholar
  30. 30.
    S. Gu, X. P. Wang, Y. Z. Wei, and B. Z. Fang (2014). Sci. China Chem. 57, 755.CrossRefGoogle Scholar
  31. 31.
    R. Gupta, S. K. Guin, and S. K. Aggarwal (2014). Electrochim. Acta 116, 314.CrossRefGoogle Scholar
  32. 32.
    M. A. Hossain, K. D. Cummins, Y. S. Park, and M. P. Soriaga (2012). Electrocatalysis 3, (3), 183.CrossRefGoogle Scholar
  33. 33.
    S. H. Ilias, K. Y. Kok, I. K. Ng, and N. U. Saidin (2013). J. Phys. 431, 012003.Google Scholar
  34. 34.
    B. Habibi (2013). Int. J. Hydrog. Energ. 38, 5464.CrossRefGoogle Scholar
  35. 35.
    R. M. Modibedi, E. K. Louw, M. K. Mathe, and K. I. Ozoemena (2013). ECS Trans. 50, (21), 9.CrossRefGoogle Scholar
  36. 36.
    N. Ibl, G. Gut, and M. Weber (1973). Electrochim. Acta 18, 307.CrossRefGoogle Scholar
  37. 37.
    M. F. Bell and J. A. Harrison (1973). J. Electroanal. Chem. 41, 15.CrossRefGoogle Scholar
  38. 38.
    O. Corduneanu, V. C. Diculescu, A. M. Chiorcea-Paquim, and A. M. Oliveira-Brett (2008). J. Electroanal. Chem. 624, 97.CrossRefGoogle Scholar
  39. 39.
    T. Alemu, B. D. Assresahegn, and T. R. Soreta (2014). Port. Electrochim. Acta 32, 21.CrossRefGoogle Scholar
  40. 40.
    M. Sawangphruk, A. Krittayavathananon, N. Chinwipas, S. Limtrakul, and J. S. Foord (2013). Fuel Cells 13, (5), 881.Google Scholar
  41. 41.
    S. S. Shendage, U. B. Patil, and J. M. Nagarkar (2013). Fuel Cells 13, (3), 364.CrossRefGoogle Scholar
  42. 42.
    R. M. Modibedi, M. K. Mathe, R. G. Motsoeneng, L. E. Khotseng, K. I. Ozoemena, and E. K. Louw (2014). Electrochim. Acta 128, 406.CrossRefGoogle Scholar
  43. 43.
    M. Rezaei, S. H. Tabaian, and D. F. Haghshenas (2013). Electrochimica Acta 87, 381.CrossRefGoogle Scholar
  44. 44.
    M. Rezaei, S. H. Tabaian, and D. F. Haghshenas (2012). J. Electroanal. Chem. 687, 95.CrossRefGoogle Scholar
  45. 45.
    B. Zhang, D. Ye, J. Li, X. Zhu, and Q. Liao (2012). J. Power Sources 214, 277.CrossRefGoogle Scholar
  46. 46.
    C. T. Hsieh, Y. Y. Liu, and A. K. Roy (2012). Electrochim. Acta 64, 205.CrossRefGoogle Scholar
  47. 47.
    M. Rezaei, S. H. Tabaian, and D. F. Haghshenas (2012). Electrochimica Acta 59, 360.CrossRefGoogle Scholar
  48. 48.
    I. Danaee (2011). J. Electroanal. Chem. 662, (2), 415.CrossRefGoogle Scholar
  49. 49.
    H. Meng, F. Xie, J. Chen, and P. K. Shen (2011). J. Mater. Chem. 21, 11352.CrossRefGoogle Scholar
  50. 50.
    I. Danaee (2013). J. Ind. Eng. Chem. 19, 1008.CrossRefGoogle Scholar
  51. 51.
    D.N. Escobar-Muñoz, A.K. Cuentas-Gallegos, M. Miranda-Hernández. ed. By L.H. Mendoza-Huizar (Research Signpost Publishing, Trindivirium, 2008), p. 89.Google Scholar
  52. 52.
    B. Scharifker and G. Hills (1983). Electrochim. Acta 28, 879.CrossRefGoogle Scholar
  53. 53.
    B. R. Scharifker and J. Mostany (1984). J. Electroanal. Chem. 177, 13.CrossRefGoogle Scholar
  54. 54.
    L. Hermann and A. Tarallo (2000). Electrochem Commun. 2, 85.CrossRefGoogle Scholar
  55. 55.
    C. H. Rios-Reyes, M. Granados-Neri, and L. H. Mendoza-Huizar (2009). Quim. Nova 32, 2382.CrossRefGoogle Scholar
  56. 56.
    L. H. Mendoza-Huizar, J. Robles, and M. Palomar-Pardavé (2003). J. Electroanal. Chem. 545, 39.CrossRefGoogle Scholar
  57. 57.
    M. Palomar-Pardavé, B. R. Scharifker, E. M. Arce, and M. Romero-Romo (2005). Electrochim. Acta 50, 4736.CrossRefGoogle Scholar
  58. 58.
    A. Milchev (1991). J. Contemp. Phys. 32, 321.CrossRefGoogle Scholar
  59. 59.
    M. Noel and K. Vasu Cyclic Voltammetry and the Frontiers of Electrochemistry (Oxford and IBH Publishing, New Delhi, 1990), pp. 308–369.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • L. H. Mendoza-Huizar
    • 1
    Email author
  • D. Garrido-Márquez
    • 1
  • C. H. Rios-Reyes
    • 2
  • M. Rivera
    • 3
  • E. García-Sánchez
    • 4
  • C. Galán-Vidal
    • 1
  1. 1.Área Académica de QuímicaUniversidad Autónoma del Estado de HidalgoMineral de la ReformaMexico
  2. 2.Área Académica de Materiales y Ciencias de la TierraUniversidad Autónoma del Estado de HidalgoMineral de la ReformaMexico
  3. 3.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  4. 4.Unidad Académica de Ingeniería EléctricaUniversidad Autónoma de ZacatecasMexicoMexico

Personalised recommendations