Journal of Cluster Science

, Volume 26, Issue 5, pp 1463–1472 | Cite as

The Charge Transfer Phenomenon in Benzene–Pyrene–Sulfoxide/Methanol System: Role of the Intermolecular Hydrogen Bond in Excited States

  • Jinfeng Zhao
  • Junsheng Chen
  • Peng Song
  • Jianyong Liu
  • Fengcai Ma
Original Paper


Sulfoxide is an ideal functional group containing S=O for exploring excited-state hydrogen bond dynamics. Benzene–pyrene–sulfoxide (BPS) molecule, as one of the important fluorescent chemosensors, was selected to complete the hydrogen bond dynamics of sulfoxides functional group connecting to methanol (MeOH). The ground-state and excited-state geometric structures were investigated based on density functional theory and the time-dependent density functional theory methods, respectively. The calculated absorption and emission spectra of BPS chemosensor agreed well with the experimental results, demonstrating the theory we adopted is reasonable and effective. The phenomenon of variable-length S=O and H–O bands in the first excited state (S1) as well as variable-short hydrogen bond S=O···H–O demonstrated that the intermolecular hydrogen bond were strengthened. Bathochromic shift stretching vibrational modes of both S=O and H–O regions in the S1 state manifested hydrogen bond were strengthened authentically. In addition, the frontier molecular orbitals (MOs), depicting the nature of the electronically excited states, supported that the S1 state of BPS–MeOH was a local excited state with a π–π* transition, whereas the second excited state was the charge transfer state.


Electronic spectra Frontier molecular orbital Intermolecular hydrogen bond Infrared spectra 



We sincerely thank the financial support from National Natural Science Foundation of China (Grant Nos. 21473195 and 21321091).


  1. 1.
    D. Yang, Y. Yang, and Y. Liu (2013). Commun. Comput. Chem. 1, 205–215.Google Scholar
  2. 2.
    G. Y. Liu, Y. H. Li, H. Zhang, and G. H. Cui (2013). Commun. Comput. Chem. 1, 88–98.Google Scholar
  3. 3.
    G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 2469–2474.CrossRefGoogle Scholar
  4. 4.
    G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 9218–9223.CrossRefGoogle Scholar
  5. 5.
    G. J. Zhao, B. H. Northrop, P. J. Stang, and K. L. Han (2010). J. Phys. Chem. A 114, 3418–3422.CrossRefGoogle Scholar
  6. 6.
    J. S. Chen, G. J. Zhao, T. R. Cook, K. L. Han, and P. J. Stang (2013). J. Am. Chem. Soc. 135, 6694–6702.CrossRefGoogle Scholar
  7. 7.
    G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B 111, 8940–8945.CrossRefGoogle Scholar
  8. 8.
    S. Chai, G. J. Zhao, P. Song, S. Q. Yang, J. Y. Liu, and K. L. Han (2009). Phys. Chem. Chem. Phys. 11, 4385–4390.CrossRefGoogle Scholar
  9. 9.
    G. J. Zhao and K. L. Han (2008). ChemPhysChem. 9, 1842–1846.CrossRefGoogle Scholar
  10. 10.
    C. Chudoba, E. T. J. Nibbering, and T. Elsaesser (1998). Phys. ReV. Lett. 81, 3010–3013.CrossRefGoogle Scholar
  11. 11.
    M. C. Carreno (1995). Chem. Rev. 95, 1717–1760.CrossRefGoogle Scholar
  12. 12.
    J. C. Carretero, R. G. Arrayas, N. D. Buezo, J. L. Garrido, I. Alonso, and J. Adrio (1999). Phosphorus Sulfur Silicon Relat. Elem. 153, 259–273.CrossRefGoogle Scholar
  13. 13.
    P. Metzner, C. Alayrac, K. Julienne, and S. Nowaczyk (2000). Actual. Chim. 3, 54–59.Google Scholar
  14. 14.
    P. Bravo and M. Zanda (1999). Enantiocontrolled Synth. Fluoro-Org. Compd. 107, 160–165.Google Scholar
  15. 15.
    H. Matsuyama (1999). Sulfur Rep. 22, 85–99.CrossRefGoogle Scholar
  16. 16.
    S. M. Allin, S. J. Shuttleworth, and P. C. Bulman (1998). Organosulfur Chem. 2, 97–104.CrossRefGoogle Scholar
  17. 17.
    W. V. Brian and W. S. Jenks (2002). J. Am. Chem. Soc. 11, 2544–2547.Google Scholar
  18. 18.
    R. S. Kathayat and N. S. Finney (2013). J. Am. Chem. Soc. 135, 12612–12614.CrossRefGoogle Scholar
  19. 19.
    F. B. Yu, P. Li, B. S. Wang, and K. L. Han (2013). J. Am. Chem. Soc. 20, 7674–7680.CrossRefGoogle Scholar
  20. 20.
    F. B. Yu, P. Li, G. J. Zhao, T. Chu, and K. L. Han (2011). J. Am. Chem. Soc. 133, 11030–11033.CrossRefGoogle Scholar
  21. 21.
    W. Lee and S. J. William (2001). J. Org. Chem. 66, 474.CrossRefGoogle Scholar
  22. 22.
    M. Calligaris and O. C. Carugo (1996). Coord. Chem. Rev. 153, 83–154.CrossRefGoogle Scholar
  23. 23.
    M. C. Calligaris (2004). Chem. Rev. 248, 351–375.Google Scholar
  24. 24.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.; Scalmani, G. Cheeseman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox (2009). Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT.Google Scholar
  25. 25.
    G. J. Zhao and K. L. Han (2007). J. Chem. Phys. 127, 024306.CrossRefGoogle Scholar
  26. 26.
    G. J. Zhao and K. L. Han (2008). Biophys. J. 94, 38–46.CrossRefGoogle Scholar
  27. 27.
    M. Zhang, W. Mi, and C. Hao (2013). Commun. Comput. Chem. 1, 269–278.Google Scholar
  28. 28.
    Y. Liu and S. C. Lan (2013). Commun. Comput. Chem. 1, 1–7.CrossRefGoogle Scholar
  29. 29.
    Y. Liu and S. C. Lan (2013). Commun. Comput. Chem. 1, 235–243.Google Scholar
  30. 30.
    J. F. Zhao, P. Song, Y. L. Cui, X. M. Liu, S. W. Sun, S. Y. Hou, and F. C. Ma (2014). Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 131, 282–287.CrossRefGoogle Scholar
  31. 31.
    F. Furche and R. Ahlrichs (2002). J. Chem. Phys. 117, 7433–7447.CrossRefGoogle Scholar
  32. 32.
    J. L. Whitten (1973). J. Chem. Phys. 58, 4496–4866.CrossRefGoogle Scholar
  33. 33.
    H. Sun, H. H. Lee, L. Blakey, B. Dargaville, T. V. Chirila, A. K. Whittaker, and S. C. Smith (2011). J. Phys. Chem. B 115, 11053–11062.CrossRefGoogle Scholar
  34. 34.
    G. J. Zhao and K. L. Han (2012). Acc. Chem. Res. 45, 404–413.CrossRefGoogle Scholar
  35. 35.
    A. D. Becke (1988). Phys. Rev. A. 38, 3098–3100.CrossRefGoogle Scholar
  36. 36.
    O. Treutler and R. Ahlrichs (1995). J. Chem. Phys. 102, 346–354.CrossRefGoogle Scholar
  37. 37.
    F. Furche and R. Ahlrichs (2002). J. Chem. Phys. 117, 7433–7447.CrossRefGoogle Scholar
  38. 38.
    D. D. Wang, C. Hao, S. Wang, D. H. Shi, and J. F. Sun (2012). Cent. Eur. J. Phys. 10, 116–123.Google Scholar
  39. 39.
    D. P. Yang, Y. F. Liu, D. H. Shi, and J. F. Sun (2012). Comput. Theor. Chem. 984, 76–84.CrossRefGoogle Scholar
  40. 40.
    V. Samant, A. K. Singh, G. Ramakrishna, H. N. Ghosh, T. K. Ghanty, and D. K. Palit (2005). J. Phys. Chem. A 109, 8693–8704.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jinfeng Zhao
    • 1
    • 2
  • Junsheng Chen
    • 1
  • Peng Song
    • 2
  • Jianyong Liu
    • 1
  • Fengcai Ma
    • 2
  1. 1.State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  2. 2.Department of Physics and ChemistryLiaoning UniversityShenyangPeople’s Republic of China

Personalised recommendations