Advertisement

Journal of Cluster Science

, Volume 26, Issue 2, pp 623–630 | Cite as

Tryptophan-[Re6Se8I6]3− Cluster Interaction: A Computational Study

  • Leonor Alvarado-Soto
  • Rodrigo Ramirez-Tagle
Original Paper

Abstract

The interaction between tryptophan (Trp) and the [Re6Se8I6]3− cluster is studied here using density functional theory calculations including relativistic scalar interactions via the zero-order regular approximation and solvent effects, which we describe in terms of interaction energies, Mulliken charge analysis and molecular orbitals. In the indole functional groups of the Trp-[Re6Se8I6]3− cluster conjugates, modification of the molecular orbitals associated with Trp occurs because states associated with the [Re6Se8I6]3− cluster and the hybrid orbitals have a mixed metal–molecule character, which is attributed to the stronger than expected π interactions facilitated by the indole group in Trp. Here, we find that the energy transfer from hybrid states of Trp-[Re6Se8I6]3− to clusters could reduce intrinsic fluorescence intensity of Trp in the conjugated system.

Keywords

Low-energy structures Genetic algorithm Density functional theory 

Notes

Acknowledgments

We acknowledge Grant FONDECYT 11130007 and 3140002.

References

  1. 1.
    S. Cordier, F. Dorson, F. Grasset, Y. Molard, B. Fabre, H. Haneda, et al. (2008). J. Clust. Sci. 20, 9. doi: 10.1007/s10876-008-0224-3.CrossRefGoogle Scholar
  2. 2.
    J. C. Gabriel, K. Boubekeur, S. Uriel, and P. Batail (2001). Chem. Rev. 101, 2037.CrossRefGoogle Scholar
  3. 3.
    R. Ramírez-Tagle and R. Arratia-Pérez (2008). J. Clust. Sci. 20, 159. doi: 10.1007/s10876-008-0213-6.CrossRefGoogle Scholar
  4. 4.
    E. Schott, X. Zarate, L. Alvarado-Soto, and R. Ramirez-Tagle (2013). Polyhedron. 65, 98. doi: 10.1016/j.poly.2013.08.006.CrossRefGoogle Scholar
  5. 5.
    K. Kirakci, P. Kubát, J. Langmaier, T. Polívka, M. Fuciman, K. Fejfarová, et al. (2013). Dalton Trans. 42, 7224. doi: 10.1039/c3dt32863e.CrossRefGoogle Scholar
  6. 6.
    R. Ramirez-Tagle and R. Arratia-Pérez (2008). Chem. Phys. Lett. 460, 438. doi: 10.1016/j.cplett.2008.06.035.CrossRefGoogle Scholar
  7. 7.
    R. N. Ghosh, P. A. Askeland, S. Kramer, and R. Loloee (2011). Appl. Phys. Lett. 98, 221103. doi: 10.1063/1.3595483.CrossRefGoogle Scholar
  8. 8.
    R. N. Ghosh, G. L. Baker, C. Ruud, and D. G. Nocera (1999). Appl. Phys. Lett. 75, 2885. doi: 10.1063/1.125180.CrossRefGoogle Scholar
  9. 9.
    C. Echeverría, A. Becerra, F. Nuñez-Villena, A. Muñoz-Castro, J. Stehberg, Z. Zheng, et al. (2012). New J. Chem. 36, 927. doi: 10.1039/c2nj21016a.CrossRefGoogle Scholar
  10. 10.
    S.-J. Choi, K. A. Brylev, J.-Z. Xu, Y. V. Mironov, Y. S. Fedorov, Y. S. Sohn, et al. (2008). J. Inorg. Biochem. 102, 1991. doi: 10.1016/j.jinorgbio.2008.07.013.CrossRefGoogle Scholar
  11. 11.
    R. Najjar (2002). Breno Pannia Espo 232, 137.Google Scholar
  12. 12.
    M. Chrysanthakopoulos, C. Giaginis, and A. Tsantili-Kakoulidou (2010). J. Chromatogr. A. 1217, 5761. doi: 10.1016/j.chroma.2010.07.023.CrossRefGoogle Scholar
  13. 13.
    X. Liu, Y. Shang, X. Ren, and H. Li (2013). J. Chem. 2013, 1. doi: 10.1155/2013/494706.Google Scholar
  14. 14.
    K. R. Williams, B. Adhyaru, R. E. Pierce, and S. G. Schulman (2002). J. Chem. Educ. 79, 115. doi: 10.1021/ed079p115.CrossRefGoogle Scholar
  15. 15.
    P. Joshi, V. Shewale, R. Pandey, S. P. Karna, V. Shanker, and S. Hussain (2011). J. Phys. Chem. C. 115, 22818. doi: 10.1021/jp2070437.CrossRefGoogle Scholar
  16. 16.
    S. Pang, Z. Zhou, Q. Wang, and O. D. Smart (2013). J. Nanoparticle Res. 15, 1495. doi: 10.1007/s11051-013-1495-7.CrossRefGoogle Scholar
  17. 17.
    E. Larrañeta, C. Martínez-Ohárriz, I. Vélaz, A. Zornoza, R. Machín, and J. R. Isasi (2014). J. Pharm. Sci. 103, 197. doi: 10.1002/jps.23774.CrossRefGoogle Scholar
  18. 18.
    G Te Velde (2001). Chemistry 22, 931. doi: 10.1002/jcc.1056.Google Scholar
  19. 19.
    W. Gao, H. Feng, X. Xuan, and L. Chen (2012). J. Mol. Model. 18, 4577. doi: 10.1007/s00894-012-1425-0.CrossRefGoogle Scholar
  20. 20.
    C. C. Pye, T. Ziegler, E. van Lenthe, and J. N. Louwen (2009). Can. J. Chem. 87, 790. doi: 10.1139/V09-008.CrossRefGoogle Scholar
  21. 21.
    F. Eckert and A. Klamt (2002). AIChE J. 48, 369.CrossRefGoogle Scholar
  22. 22.
    K. Morokuma (1977). Acc. Chem. Res. 1325, 294.CrossRefGoogle Scholar
  23. 23.
    A. C. Tsipis and A. V. Stalikas (2013). Inorg. Chem. 51, 2541.CrossRefGoogle Scholar
  24. 24.
    I. B. Лeyc, I. A. Клeнiнa, К. A. Зaб, and O. A. Гoлiчeн (2011). Biopolym. Cell. 27, 465.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratorio de BionanotecnologiaUniversidad Bernardo O´HigginsSantiagoChile

Personalised recommendations