Journal of Cluster Science

, Volume 25, Issue 4, pp 1085–1098 | Cite as

Sensitivity of the Multiple Functional Moieties of Amino Acids for the Self-Assembly of Au Nanoparticles on Different Physicochemical Properties

Original Paper

Abstract

This paper investigates the extent of the self-assembly process of Au nanoparticles, depending on the nature of structural and functional moieties of various amino acids (l-cystine, glutathione, l-cysteine and N-acetyl cysteine) and their influence on the plasmon sensitivity and electrokinetic parameters in correlation with the catalysis of p-nitrophenol reduction. DLS particle size analysis revealed that the hydrodynamic size 10–20 nm of Au nanospheres was increased to 135–550 nm, 100–460 nm and 130–240 nm after the addition of l-cystine, l-cysteine and glutathione, respectively, in contrast to no significant change of particle size (15–60 nm) after N-acetyl cysteine addition. This difference in the extent of aggregation as a function of structures of amino acids is further evidenced by lengthy tubular arrays formation by glutathione as compared to branched chain like morphology obtained by l-cystine through TEM. FTIR studies further confirmed the binding of amino acids to Au nanospheres via –SH followed by linking of adjacent nanoparticles through H-bonding. Due to the conformational diversity of amino acids, the surface adsorbed –SH, –COO and –NH3+ species over assembled Au nanoparticles led to the alteration of zeta potential and conductance, thus affected the catalysis for the reduction of p-nitrophenol as compared to unmodified Au nanoparticles.

Keywords

Self-assemble Au nanospheres Amino acid modified Au nanoparticles Electrokinetic parameters Catalytic activity 

Supplementary material

10876_2014_691_MOESM1_ESM.doc (2.7 mb)
Supplementary material 1 (DOC 2726 kb)

References

  1. 1.
    G. M. Whitesides and M. Boncheva (2002). Proc. Natl Acad. Sci. USA 99, 4769.CrossRefGoogle Scholar
  2. 2.
    M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzan (2010). ACS Nano 4, 3591.CrossRefGoogle Scholar
  3. 3.
    G. M. Whitesides and B. Grzybowski (2002). Science 295, 2418.CrossRefGoogle Scholar
  4. 4.
    K. J. M. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski (2009). Small 5, 1600.CrossRefGoogle Scholar
  5. 5.
    T. S. Sreeprasad and T. Pradeep (2011). Langmuir 27, 3381.CrossRefGoogle Scholar
  6. 6.
    T. K. Sau and C. J. Murphy (2005). Langmuir 21, 2923.CrossRefGoogle Scholar
  7. 7.
    G. Kawamura, Y. Yang, and M. Nogami (2008). J. Phys. Chem. C 112, 10632.CrossRefGoogle Scholar
  8. 8.
    K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, and P. V. Kamat (2004). J. Phys. Chem. B 108, 13066.CrossRefGoogle Scholar
  9. 9.
    M. A. El-Sayed (2001). Acc. Chem. Res. 34, 257.CrossRefGoogle Scholar
  10. 10.
    S. Nie and S. R. Emory (1997). Science 275, 1102.CrossRefGoogle Scholar
  11. 11.
    Z. L. Wang (2000). J. Phys. Chem. B 104, 1153.CrossRefGoogle Scholar
  12. 12.
    B. M. I. van der Zande, M. R. Boehmer, L. G. J. Fokkink, and C. Schoenenberger (2000). Langmuir 16, 451.CrossRefGoogle Scholar
  13. 13.
    B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed (2000). J. Phys. Chem. B 104, 8635.CrossRefGoogle Scholar
  14. 14.
    X. Hu, W. Cheng, T. Wang, E. Wang, and S. Dong (2005). Nanotechnology 16, 2164.CrossRefGoogle Scholar
  15. 15.
    I. W. Hamley (2003). Angew. Chem. Int. Ed. 42, 1692.CrossRefGoogle Scholar
  16. 16.
    H. S. Park, A. Agarwal, N. A. Kotov, and O. D. Lavrentovich (2008). Langmuir 24, 13833.CrossRefGoogle Scholar
  17. 17.
    H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean (2003). Science 301, 1882.CrossRefGoogle Scholar
  18. 18.
    S. Zhang, X. Kou, Z. Yang, Q. Shi, G. D. Stucky, L. Sun, J. Wang and C. Yan (2007). Chem. Commun. 1816.Google Scholar
  19. 19.
    P. K. Sudeep, S. T. S. Joseph, and K. G. Thomas (2005). J. Am. Chem. Soc. 127, 6516.CrossRefGoogle Scholar
  20. 20.
    O. P. Khatri, K. Murase, and H. Sugimura (2008). Langmuir 24, 3787.CrossRefGoogle Scholar
  21. 21.
    F. P. Zamborini, J. F. Hicks, and R. W. Murray (2000). J. Am. Chem. Soc. 122, 4514.CrossRefGoogle Scholar
  22. 22.
    A. Sanchez-Iglesias, M. Grzelczak, J. Perez-Juste, and L. M. Liz-Marzan (2010). Angew. Chem. Int. Ed. 49, 9985.CrossRefGoogle Scholar
  23. 23.
    M. Sethi, G. Joung, and M. R. Knecht (2009). Langmuir 25, 1572.CrossRefGoogle Scholar
  24. 24.
    X. Kou, S. Zhang, Z. Yang, C. K. Tsung, G. D. Stucky, L. Sun, J. Wang, and C. Yan (2007). J. Am. Chem. Soc. 129, 6402.CrossRefGoogle Scholar
  25. 25.
    J. Liao, Y. Zhang, W. Yu, L. Xu, C. Ge, J. Liu, and N. Gu (2003). Colloids Surf., A. 223, 177.CrossRefGoogle Scholar
  26. 26.
    T. Sen and A. Patra (2009). J. Phys. Chem. C 113, 13125.CrossRefGoogle Scholar
  27. 27.
    C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff (1996). Nature 382, 607.CrossRefGoogle Scholar
  28. 28.
    B. Mukherjee and J. W. Weaver (2010). Environ. Sci. Technol. 44, 3332.CrossRefGoogle Scholar
  29. 29.
    T. Kim, K. Lee, M. Gong, and S. W. Joo (2005). Langmuir 21, 9524.CrossRefGoogle Scholar
  30. 30.
    C. J. Orendorff, P. L. Hankins, and C. J. Murphy (2005). Langmuir 21, 2022.CrossRefGoogle Scholar
  31. 31.
    N. R. Jana, L. Gearheart, and C. J. Murphy (2001). Langmuir 17, 6782.CrossRefGoogle Scholar
  32. 32.
    M. Eguchi, D. Mitsui, H. L. Wu, R. Sato, and T. Teranishi (2012). Langmuir 28, 9021.CrossRefGoogle Scholar
  33. 33.
    D. F. Zhang, Q. Zhang, L. Y. Niu, L. Jiang, P. G. Yin, and L. Guo (2011). J. Nanopart. Res. 13, 3923.CrossRefGoogle Scholar
  34. 34.
    R. Kaur and B. Pal (2012). J. Mol. Catal. A: Chem. 355, 39.CrossRefGoogle Scholar
  35. 35.
    T. Wang, X. Hu, and S. Dong (2008). Chem. Commun. 4625.Google Scholar
  36. 36.
    A. N. Shipway, M. Lahav, R. Gabai, and I. Willner (2000). Langmuir 16, 8789.CrossRefGoogle Scholar
  37. 37.
    S. Mandal, A. Shundo, S. Acharya, J. P. Hill, Q. Ji, and K. Ariga (2009). Chem. Asian J. 4, 1055.CrossRefGoogle Scholar
  38. 38.
    R. Kaur and B. Pal (2014). Colloids and Surfaces A: Physicochem. Eng. Aspects 441, 155.CrossRefGoogle Scholar
  39. 39.
    A. Ulman (1996). Chem. Rev. 96, 1533.CrossRefGoogle Scholar
  40. 40.
    K. Naka, H. Itoh, Y. Tampo, and Y. Chujo (2003). Langmuir 19, 5546.CrossRefGoogle Scholar
  41. 41.
    J. A. Davis, R. O. James, and J. O. Leckie (1978). J. Colloid Interface Sci. 63, 480.CrossRefGoogle Scholar
  42. 42.
    K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, and P. Biswas (2011). Nanoscale Res. Lett. 6, 1.Google Scholar
  43. 43.
    K. Kuroda, T. Ishida, and M. Haruta (2009). J. Mol. Catal. A Chem. 298, 7.CrossRefGoogle Scholar
  44. 44.
    S. Wunde, F. Polzer, Y. Lu, Y. Mei, and M. Ballauff (2010). J. Phys. Chem. C 114, 8814.CrossRefGoogle Scholar
  45. 45.
    A. Azetsu, H. Koga, A. Isogai, and T. Kitaoka (2011). Catalysts 1, 83.CrossRefGoogle Scholar
  46. 46.
    Y. Wei, S. Han, J. Kim, S. Soh, and B. A. Grzybowski (2010). J. Am. Chem. Soc. 132, 11018.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Chemistry and BiochemistryThapar UniversityPatialaIndia

Personalised recommendations