Journal of Cluster Science

, Volume 25, Issue 1, pp 147–171 | Cite as

Encapsulating Hydrides and Main-Group Anions in d10-Metal Clusters Stabilized by 1,1-Dichalcogeno Ligands

Review Paper

Abstract

Cu(I) and Ag(I) can form with 1,1-dithio(seleno) ligands various types of clusters, the framework of which being maintained by the metal–chalcogen bonds provided by the bridging ligands. The metal centers are generally tricoordinated and consequently possess an accepting orbital of valence s and/or p character. There is no formal metal–metal bonding, but only weak d10–d10 interactions which favor the overlap between the metal accepting orbitals. Their bonding combinations are generally suited for interacting with the occupied valence orbitals of an encapsulated anion. Thus, many of these clusters are able to encapsulate anions, a situation which tends to stabilize the whole structure through building of significant host–guest bonding. Not only is the anion encapsulation effect to stabilize the cluster cage, but it can also significantly modify its structure, or act as a template in the stabilization of species which would not exist as empty clusters. This paper reviews the synthesis, structure and bonding of all the known clusters of d10 metals decorated with 1,1-dichalchogeno ligands and containing entrapped atomic anions. Their structures are analyzed with respect to size and shape. The photoluminescence properties of some of them are discussed.

Keywords

Anion encapsulation d10-metal clusters Diseleno ligands Structure Bonding 

References

  1. 1.
    O. Fisher and M. B. Maple (eds) Topics in Current Physics, Vol 32: Superconductivity in Ternary Compounds I: Structural, Electronic, and Lattice Properties (Springer, New York, 1982).Google Scholar
  2. 2.
    V. N. Soloviev, A. Eichhofer, D. Fenske, and U. Banin (2000). J. Am. Chem. Soc. 122, 2673.CrossRefGoogle Scholar
  3. 3.
    S. Sculfort and P. Braunstein (2011). Chem. Soc. Rev. 40, 2741.CrossRefGoogle Scholar
  4. 4.
    P. K. Mehrotra and R. Hoffmann (1978). Inorg. Chem. 17, 2187.CrossRefGoogle Scholar
  5. 5.
    Y. Jiang, S. Alvarez, and R. Hoffmann (1985). Inorg. Chem. 24, 749.CrossRefGoogle Scholar
  6. 6.
    S. Alvarez, V. Ramon, and R. Hoffman (1985). J. Am. Chem. Soc. 107, 6253.CrossRefGoogle Scholar
  7. 7.
    P. Pyykkö, N. Runeberg, and F. Mendizabal (1997). Chem. Eur. J. 3, 1451.CrossRefGoogle Scholar
  8. 8.
    L. E. McCandish, E. C. Bissel, D. Coucouvanis, J. P. Fackler Jr, and K. J. Knox (1968). J. Am. Chem. Soc. 90, 7357.CrossRefGoogle Scholar
  9. 9.
    F. J. Hollander and D. Coucouvanis (1974). J. Am. Chem. Soc. 96, 5646.CrossRefGoogle Scholar
  10. 10.
    F. J. Hollander and D. Coucouvanis (1977). J. Am. Chem. Soc. 99, 6268.CrossRefGoogle Scholar
  11. 11.
    H. Dietrich (1978). Acta Crystallogr. A32, S26.Google Scholar
  12. 12.
    H. Dietrich, W. Storck, and G. Manecke (1981). Makromol. Chem. 182, 2371.CrossRefGoogle Scholar
  13. 13.
    Z. Hanhui and Y. Xiufen (1989). Jiegou Huaxue (Chin. J. Struct. Chem.) 8, 132.Google Scholar
  14. 14.
    C. W. Liu, T. Stubbs, R. J. Staples, and J. P. Fackler Jr (1995). J. Am. Chem. Soc. 117, 9778.CrossRefGoogle Scholar
  15. 15.
    J. P. Fackler Jr, R. J. Staples, C. W. Liu, R. T. Stubbs, C. Lopez, and J. T. Pitts (1998). J. Pure Appl. Chem. 70, 839.CrossRefGoogle Scholar
  16. 16.
    I. Dance and K. Fisher (1994). Prog. Inorg. Chem. 41, 637.CrossRefGoogle Scholar
  17. 17.
    P. J. M. W. L. Birker and G. C. Verschoor (1981). J. Chem. Soc. Chem. Commun. 322.Google Scholar
  18. 18.
    C.-C. Wu, B.-H. Lee, P.-K. Liao, C.-S. Fang, and C. W. Liu (2012). J. Chin. Chem. Soc. 59, 480.CrossRefGoogle Scholar
  19. 19.
    M. T. Garland, J.-F. Halet, and J.-Y. Saillard (2001). Inorg. Chem. 40, 3342.CrossRefGoogle Scholar
  20. 20.
    P. J. M. W. L. Birker and H. C. Freeman (1977). J. Am. Chem. Soc. 99, 6890.CrossRefGoogle Scholar
  21. 21.
    P. J. M. W. L. Birker (1979). Inorg. Chem. 18, 3502.CrossRefGoogle Scholar
  22. 22.
    H. J. Schugar, C.-C. Ou, J. A. Thich, J. A. Potenza, T. R. Felthouse, M. S. Haddad, D. N. Hendrickson, W. Furey Jr, and R. A. Lalancette (1980). Inorg. Chem. 19, 543.CrossRefGoogle Scholar
  23. 23.
    D. Wu, J. Q. Huang, Y. Lin, and J. L. Huang (1988). Sci. Sin. Ser. B. (Engl. Ed.) 31, 800.Google Scholar
  24. 24.
    Z. X. Huang, S. F. Lu, J. Q. Huang, D. M. Wu, and J. L. Huang (1991). Jiegou Huaxue (Chin. J. Struct. Chem.) 10, 213.Google Scholar
  25. 25.
    C. W. Liu, L.-J. Shang, J.-C. Wang and T.-C. Keng (1999). Chem. Commun. 995.Google Scholar
  26. 26.
    C. W. Liu, C.-M. Hung, H.-C Haia, B.-J. Liaw, L.-S. Liou, Y.-F. Tsai and J.-C. Wang (2003). Chem. Commun. 976.Google Scholar
  27. 27.
    C. W. Liu, C.-M. Hung, B. K. Santra, H.-C. Chen, H.-H. Hsueh, and J.-C. Wang (2003). Inorg. Chem. 42, 3216.CrossRefGoogle Scholar
  28. 28.
    C. W. Liu, C.-M. Hung, B. K. Santra, J.-C. Wang, H.-M. Kao, and Z. Lin (2003). Inorg. Chem. 42, 8551.CrossRefGoogle Scholar
  29. 29.
    C. W. Liu, H.-C. Haia, C.-M. Hung, B. K. Santra, B.-J. Liaw, Z. Lin, and J.-C. Wang (2004). Inorg. Chem. 43, 4464.CrossRefGoogle Scholar
  30. 30.
    C. W. Liu, B. Sarkar, Y.-J. Huang, P.-K. Liao, J.-C. Wang, J.-Y. Saillard, and S. Kahlal (2009). J. Am. Chem. Soc. 131, 11222.CrossRefGoogle Scholar
  31. 31.
    P.-K. Liao, B. Sarkar, H.-W. Chang, J.-C. Wang, and C. W. Liu (2009). Inorg. Chem. 48, 4089.CrossRefGoogle Scholar
  32. 32.
    C. W. Liu, H.-W. Chang, B. Sarkar, J.-Y. Saillard, S. Kahlal, and Y.-Y. Wu (2010). Inorg. Chem. 49, 468.CrossRefGoogle Scholar
  33. 33.
    C. W. Liu, H.-W. Chang, C.-S. Fang, B. Sarkar, and J.-C. Wang (2010). Chem. Commun. 46, 4571.CrossRefGoogle Scholar
  34. 34.
    P.-K. Liao, K.-G. Liu, C.-S. Fang, C. W. Liu, J. P. Fackler Jr, and Y.-Y. Wu (2011). Inorg. Chem. 50, 8410.CrossRefGoogle Scholar
  35. 35.
    P.-K. Liao, D.-R. Shi, J.-H. Liao, C. W. Liu, A. V. Artem’ev, V. A. Kuimov, N. K. Gusarova, and B. A. Trofimov (2012). Eur. J. Inorg. Chem. 30, 4921.CrossRefGoogle Scholar
  36. 36.
    C. Latouche, S. Kahlal, E. Furet, P.-K. Liao, Y.-R. Lin, C.-S. Fang, J. Cuny, C. W. Liu, and J.-Y. Saillard (2013). Inorg. Chem. 52, 7752.CrossRefGoogle Scholar
  37. 37.
    D. Cardell, G. Hogarth, and S. Faulkner (2006). Inorg. Chim. Acta 359, 1321.CrossRefGoogle Scholar
  38. 38.
    P.-K. Liao, C.-S. Fang, A. J. Edwards, S. Kahlal, J.-Y. Saillard, and C. W. Liu (2012). Inorg. Chem. 51, 6577.CrossRefGoogle Scholar
  39. 39.
    C. W. Liu, Y.-R. Lin, C.-S. Fang, C. Latouche, S. Kahlal, and J. Y. Saillard (2013). Inorg. Chem. 52, 2070.CrossRefGoogle Scholar
  40. 40.
    C. Latouche, S. Kahlal, Y.-R. Lin, J.-H. Liao, E. Furet, C. W. Liu and J.-Y. Saillard (2013). Inorg. Chem. 52, 13259.Google Scholar
  41. 41.
    R. D. Köhn, Z. Pan, M. F. Mahon and G. Kociok-Köhn (2003). Chem. Commun. 1272.Google Scholar
  42. 42.
    C. W. Liu, J. T. Pitts, and J. P. Fackler Jr (1997). Polyhedron 16, 3899.CrossRefGoogle Scholar
  43. 43.
    C. W. Liu, R. J. Staples, and J. P. Fackler Jr (1998). Coord. Chem. Rev. 174, 147.CrossRefGoogle Scholar
  44. 44.
    P. G. Harrison, M. J. Begley, T. Kikabhai and F. Killer (1986). J. Chem. Soc. Dalton Trans. 925.Google Scholar
  45. 45.
    A. Albinati, M. Casarin, C. Maccato, L. Pandolfo, and A. Vittadini (1999). Inorg. Chem. 38, 1145.CrossRefGoogle Scholar
  46. 46.
    B. K. Santra, C.-M. Hung, B.-J. Liaw, J.-C. Wang, and C. W. Liu (2004). Inorg. Chem. 43, 7570.CrossRefGoogle Scholar
  47. 47.
    C. W. Liu, M. D. Irwin, A. A. Mohamed, and J. P. Fackler Jr (2004). Inorg. Chim. Acta 357, 3950.CrossRefGoogle Scholar
  48. 48.
    C. W. Liu, T. S. Lobana, B. K. Santra, C.-M. Hung, H.-Y. Liu, B. J. Liaw, and J.-C. Wang (2006). Dalton Trans. 560.Google Scholar
  49. 49.
    M. Shafaei-Fallah, C. E. Anson, D. Fenske and A. Rothenberger (2005). Dalton Trans. 2300.Google Scholar
  50. 50.
    C. W. Liu, I.-J. Shang, C.-M. Hung, J.-C. Wang and T.-C. Keng (2002). J. Chem. Soc., Dalton Trans. 1974.Google Scholar
  51. 51.
    C. W. Liu, P.-K. Liao, C.-S. Fang, J.-Y. Saillard, S. Kahlal, and J.-C. Wang (2011). Chem. Comm. 47, 5831.CrossRefGoogle Scholar
  52. 52.
    C. W. Liu, C.-S. Feng, R.-J. Fu, H.-W. Chang, J.-Y. Saillard, S. Kahlal, J.-C. Wang, and I.-J. Chang (2010). Inorg. Chem. 49, 4934.CrossRefGoogle Scholar
  53. 53.
    C. W. Liu, I. J. Shang, R.-J. Fu, B.-J. Liaw, J.-C. Wang, and I.-J. Chang (2006). Inorg. Chem. 45, 2335.CrossRefGoogle Scholar
  54. 54.
    C.-M. Hung, Y.-H. Chu, B. K. Santra, B.-J. Liaw, J. C. Wang, and C. W. Liu (2006). J. Chin. Chem. Soc. 53, 825.Google Scholar
  55. 55.
    C. W. Liu, C.-M. Hung, B. K. Santra, Y.-H. Chu, J.-C. Wang, and Z. Lin (2004). Inorg. Chem. 43, 4306.CrossRefGoogle Scholar
  56. 56.
    C. W. Liu, C.-M. Hung, J.-C. Wang and T.-C. Keng (2002). J. Chem. Soc. Dalton Trans. 3482.Google Scholar
  57. 57.
    C. W. Liu, C.-M. Hung, H.-C. Chen, J.-C. Wang, T.-C. Keng and K. Guo (2000). Chem. Commun. 1897.Google Scholar
  58. 58.
    Y.-J. Li, C. Latouche, S. Kahlal, J.-H. Liao, R. S. Dhayal, J.-Y. Saillard, and C. W. Liu (2012). Inorg. Chem. 51, 7439.CrossRefGoogle Scholar
  59. 59.
    B. Li, J.-H. Liao, H.-T. Tang, Y.-J. Li, and C. W. Liu (2013). Dalton Trans. 42, 14384.CrossRefGoogle Scholar
  60. 60.
    Z. Huang, X. Lei, M. Hong, and H. Liu (1992). Inorg. Chem. 31, 2990.CrossRefGoogle Scholar
  61. 61.
    W. Su, M. Hong, F. Jiang, H. Liu, Z. Zhou, D. Wu, and T. C. W. D. Mak (1996). Polyhedron 15, 4047.CrossRefGoogle Scholar
  62. 62.
    Q. Zhang, R. Cao, M. Hong, W. Su, and H. Liu (1998). Inorg. Chim. Acta 277, 171.CrossRefGoogle Scholar
  63. 63.
    P.-K. Liao (2013). Dissertation, National Dong Hwa University, Hualien, Taiwan.Google Scholar
  64. 64.
    C. W. Liu, H.-W. Chang, P.-K. Liao, C.-S. Fang, J.-Y. Saillard, and S. Kahlal (2011). J. Cluster Sci. 22, 381.CrossRefGoogle Scholar
  65. 65.
    B. Li, J.-H. Liao, Y.-J. Li, and C. W. Liu (2013). CrystEngComm 15, 6140.CrossRefGoogle Scholar
  66. 66.
    J.-H. Liao, C. Latouche, B. Li, S. Kahlal, J.-Y. Saillard and C. W. Liu (submitted) A twelve-coordinated iodide in a cuboctahedral silver(I) skeleton.Google Scholar
  67. 67.
    Z.-H. Wei, C.-Y. Ni, H.-X. Li, Z.-G. Ren, Z.-R. Sun, and J.-P. Lang (2013). Chem. Commun. 49, 4836.CrossRefGoogle Scholar
  68. 68.
    Y. Takino, N. Yoshinari, K. Tsuge, T. Kawamoto, and T. Konno (2012). Chem. Lett. 41, 334.CrossRefGoogle Scholar
  69. 69.
    R. Hoffmann, P. V. R. Schleyer, and H. F. Schaefer III (2008). Angew. Chem. Int. Ed. 47, 7164.CrossRefGoogle Scholar
  70. 70.
    J.-H. Liao, H.-W. Chang, H.-C. You, C.-S. Fang, and C. W. Liu (2011). Inorg. Chem. 50, 2070.CrossRefGoogle Scholar
  71. 71.
    H. Hakkinen (2008). Chem. Soc. Rev. 37, 1847.CrossRefGoogle Scholar
  72. 72.
    M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Grönbeck, and H. Häkkinen (2008). PNAS 105, 9157.CrossRefGoogle Scholar
  73. 73.
    H. Hakkinen (2008). Nat. Chem. 4, 443.CrossRefGoogle Scholar
  74. 74.
    Y. Pei and X. C. Zeng (2012). Nanoscale 4, 4054.CrossRefGoogle Scholar
  75. 75.
    R. S. Dhayal, J.-H. Liao, Y.-R. Lin, P.-K. Liao, S. Kahlal, J.-Y. Saillard, and C. W. Liu (2013). J. Am. Chem. Soc. 135, 4704.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institut des Sciences Chimiques de RennesUMR 6226 CNRS-Université de Rennes 1RennesFrance
  2. 2.Department of ChemistryNational Dong Hwa UniversityHualienTaiwan, Republic of China

Personalised recommendations