Journal of Cluster Science

, Volume 25, Issue 3, pp 867–878 | Cite as

The Oxalato-Titanium-Containing Tungstophosphate(V) Dimers, [Ti8(C2O4)8P2W18O76(H2O)4]18− and [Ti6(C2O4)4P4W32O124]20−

  • Ghada Al-Kadamany
  • Bassem S. Bassil
  • Farah Raad
  • Ulrich Kortz
Original Paper


The oxalato-titanium(IV)-containing, dimeric 18-tungsto-2-phosphate [Ti8(C2O4)8P2W18O76(H2O)4]18− (1) and the 32-tungsto-4-phosphate [Ti6(C2O4)4P4W32O124]20− (2) are formed upon reaction of the oxalato-titanium complex [TiO(C2O4)2]2− with the trilacunary Keggin precursor [A-α-PW9O34]9− and the hexalacunary Wells–Dawson precursor [H2P2W12O48]12−, respectively. Polyanion 1 consists of two {PW9} units encapsulating eight titanium centers and connected to each other via two Ti–O–Ti bridges, and crystallizes as a mixed potassium-sodium-lithium salt in the triclinic space group \(P{\bar{1}}\). Polyanion 2 comprises two {P2W16} units containing each two titanium atoms, and the two half-units are connected via two titanium atoms decorated by two oxalate groups each, and crystallizes as a mixed potassium-lithium salt in the rhombohedral space group \(R{\bar{3}}c\). Polyanions 1 and 2 were characterized in the solid state by single-crystal XRD, FT-IR, and TGA, whereas polyanion 2 was also investigated by 31P and 183W NMR.


Keggin ion Polyoxometalates Synthesis Titanium Tungsten 



U. K. thanks the German Science Foundation (DFG KO-2288/9-1) and Jacobs University for research support. Figures 14 were generated by Diamond Version 3.2i (copyright Crystal Impact GbR).


  1. 1.
    M. T. Pope, Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).CrossRefGoogle Scholar
  2. 2.
    M. T. Pope and A. Müller (1991). Angew. Chem. Int. Ed. Engl. 30, 34.CrossRefGoogle Scholar
  3. 3.
    C. L. Hill (ed.) (1998). Chem. Rev. 98 (Special issue on polyoxometalates).Google Scholar
  4. 4.
    U. Kortz (guest editor) (2009). Eur. J. Inorg. Chem. 2009, 5055 (Issue dedicated to polyoxometalates).Google Scholar
  5. 5.
    L. Cronin and A. Müller (guest editors) (2012). Chem. Soc. Rev. 41, 7325 (Issue dedicated to polyoxometalates).Google Scholar
  6. 6.
    U. Kortz and T. Liu (guest editors) (2013). Eur. J. Inorg. Chem. 2013, 1556 (Polyoxometalates Cluster Science Issue).Google Scholar
  7. 7.
    M. T. Pope and U. Kortz Polyoxometalates, Encyclopedia of Inorganic and Bioinorganic Chemistry (Wiley-VCH, Weinheim, 2012).Google Scholar
  8. 8.
    O. A. Kholdeeva, R. I. Maksimovskaya, G. M. Maksimov, and L. A. Kovaleva (2001). Kinet. Catal. 42, 217.CrossRefGoogle Scholar
  9. 9.
    O. A. Kholdeeva, T. A. Trubitsina, G. M. Maksimov, A. V. Golovin, and R. I. Maksimovskaya (2005). Inorg. Chem. 44, 1635.CrossRefGoogle Scholar
  10. 10.
    O. A. Kholdeeva and R. I. Maksimovskaya (2007). J. Mol. Catal. A 262, 7.CrossRefGoogle Scholar
  11. 11.
    O. A. Kholdeeva (2013). Eur. J. Inorg. Chem. 2013, 1595.Google Scholar
  12. 12.
    F. Hussain, B. S. Bassil, U. Kortz, O. A. Kholdeeva, M. N. Timofeeva, P. de Oliveira, B. Keita, and L. Nadjo (2007). Chem. Eur. J. 13, 4733.CrossRefGoogle Scholar
  13. 13.
    O. A. Kholdeeva, B. G. Donoeva, T. A. Trubitsina, G. Al-Kadamany, and U. Kortz (2009). Eur. J. Inorg. Chem. 2009, 5134.CrossRefGoogle Scholar
  14. 14.
    B. G. Donoeva, T. A. Trubitsina, N. S. Antonova, J. J. Carbó, J. M. Poblet, G. Al-Kadamany, U. Kortz, and O. A. Kholdeeva (2010). Eur. J. Inorg. Chem. 2010, 5312.CrossRefGoogle Scholar
  15. 15.
    F. Hussain, B. S. Bassil, L.-H. Bi, M. Reicke, and U. Kortz (2004). Angew. Chem. Int. Ed. 43, 3485.CrossRefGoogle Scholar
  16. 16.
    G. A. Al-Kadamany, B. S. Bassil, and U. Kortz (2012). Compt. Rend. Chimie 15, 130.CrossRefGoogle Scholar
  17. 17.
    W. H. Knoth, P. J. Domaille, and D. C. Roe (1983). Inorg. Chem. 22, 198.CrossRefGoogle Scholar
  18. 18.
    J. F. W. Keana and M. D. Ogan (1986). J. Am. Chem. Soc. 108, 7951.CrossRefGoogle Scholar
  19. 19.
    T. Yamase, T. Ozeki, and S. Motomura (1992). Bull. Chem. Soc. Jpn. 65, 1453.CrossRefGoogle Scholar
  20. 20.
    K. Hayashi, M. Takahashi, and K. Nomiya (2005). Dalton Trans. 23, 3751.CrossRefGoogle Scholar
  21. 21.
    P. J. Domaille and W. H. Knoth (1983). Inorg. Chem. 22, 818.CrossRefGoogle Scholar
  22. 22.
    K. Nomiya, M. Takahashi, J. A. Widegren, T. Aizawa, Y. Sakai, and N. C. Kasuga (2002). J. Chem. Soc. Dalton 19, 3679.CrossRefGoogle Scholar
  23. 23.
    K. Hayashi, H. Murakami, and K. Nomiya (2006). Inorg. Chem. 45, 8078.CrossRefGoogle Scholar
  24. 24.
    K. Hayashi, C. N. Kato, A. Shinohara, Y. Sakai, and K. Nomiya (2007). J. Mol. Catal. A 262, 30.CrossRefGoogle Scholar
  25. 25.
    Y. Matsuki, Y. Mouri, Y. Sakai, S. Matsunaga, and K. Nomiya (2013). Eur. J. Inorg. Chem. 2013, 1761.CrossRefGoogle Scholar
  26. 26.
    L. Y. Qu, Q. J. Shan, J. Gong, R. Q. Lu, and D. R. Wang (1997). J. Chem. Soc. Dalton 1997, 4525.CrossRefGoogle Scholar
  27. 27.
    S. Yoshida, H. Murakami, Y. Sakai, and K. Nomiya (2008). Dalton Trans. 2008, 4630.CrossRefGoogle Scholar
  28. 28.
    Y. Sakai, K. Yoza, C. N. Kato, and K. Nomiya (2003). Dalton Trans. 2003, 3581.CrossRefGoogle Scholar
  29. 29.
    U. Kortz, S. S. Hamzeh, and N. A. Nasser (2003). Chem. Eur. J. 9, 2945.CrossRefGoogle Scholar
  30. 30.
    Y. Sakai, K. Yoza, C. N. Kato, and K. Nomiya (2003). Chem. Eur. J. 9, 4077.CrossRefGoogle Scholar
  31. 31.
    Y. Sakai, Y. Kitakoga, K. Hayashi, K. Yoza, and K. Nomiya (2004). Eur. J. Inorg. Chem. 2004, 4646.CrossRefGoogle Scholar
  32. 32.
    Y. Sakai, S. Yoshida, T. Hasegawa, H. Murakami, and K. Nomiya (2007). Bull. Chem. Soc. Jpn. 80, 1965.CrossRefGoogle Scholar
  33. 33.
    H. Murakami, K. Hayashi, I. Tsukada, T. Hasegawa, S. Yoshida, R. Miyano, C. N. Kato, and K. Nomiya (2007). Bull. Chem. Soc. Jpn. 80, 2161.CrossRefGoogle Scholar
  34. 34.
    K. Nomiya, M. Takahashi, K. Ohsawa, and J. A. Widegren (2001). J. Chem. Soc. Dalton 2001, 2872.CrossRefGoogle Scholar
  35. 35.
    Y. Mouri, Y. Sakai, Y. Kobayashi, S. Yoshida, and K. Nomiya (2010). Materials 3, 503.CrossRefGoogle Scholar
  36. 36.
    K. Nomiya, Y. Mouri, Y. Sakai, and S. Matsunaga (2012). Inorg. Chem. Comm. 19, 10.CrossRefGoogle Scholar
  37. 37.
    G. Al-Kadamany, F. Hussain, S. S. Mal, M. H. Dickman, N. Leclerc-Laronze, J. Marrot, E. Cadot, and U. Kortz (2008). Inorg. Chem. 47, 8574.CrossRefGoogle Scholar
  38. 38.
    D. A. Judd, Q. Chen, C. F. Campana, and C. L. Hill (1997). J. Am. Chem. Soc. 119, 5461.CrossRefGoogle Scholar
  39. 39.
    B. Godin, Y. G. Chen, J. Vaissermann, L. Ruhlmann, M. Verdaguer, and P. Gouzerh (2005). Angew. Chem. Int. Ed. 44, 3072.CrossRefGoogle Scholar
  40. 40.
    Z. M. Zhang, S. Yao, Y. G. Li, Y. H. Wang, Y. F. Qi, and E. B. Wang (2008). Chem. Commun. 2008, 1650.CrossRefGoogle Scholar
  41. 41.
    S. Yao, Z. Zhang, Y. Li, Y. Lu, E. B. Wang, and Z. Su (2010). Cryst. Growth Design 10, 135.CrossRefGoogle Scholar
  42. 42.
    B. Godin, J. Vaissermann, P. Herson, L. Ruhlmann, M. Verdaguer, and P. Gouzerh (2005). Chem. Commun. 2005, 5624.CrossRefGoogle Scholar
  43. 43.
    S. Yao, Z. M. Zhang, Y. G. Li, and E. B. Wang (2009). Dalton Trans. 2009, 1786.CrossRefGoogle Scholar
  44. 44.
    U. Kortz (2003). J. Clust. Sci. 14, 205.CrossRefGoogle Scholar
  45. 45.
    A. Ostuni and M. T. Pope (2000). Compt. Rend. Acad. Sci. II C 3, 199.Google Scholar
  46. 46.
    S. G. Mitchell, S. Khanra, H. N. Miras, T. Boyd, D. L. Long, and L. Cronin (2009). Chem. Commun. 2009, 2712.CrossRefGoogle Scholar
  47. 47.
    A. J. Gaunt, I. May, D. Collison, K. T. Holman, and M. T. Pope (2003). J. Mol. Struct. 656, 101.CrossRefGoogle Scholar
  48. 48.
    Y. Saku, Y. Sakai, and K. Nomiya (2009). Inorg. Chem. Commun. 12, 650.CrossRefGoogle Scholar
  49. 49.
    N. J. Crano, R. C. Chambers, V. M. Lynch, and M. A. Fox (1996). J. Mol. Catal. A 114, 65.CrossRefGoogle Scholar
  50. 50.
    K. Nomiya, Y. Arai, Y. Shimizu, M. Takahashi, T. Takayama, H. Weiner, T. Nagata, J. A. Widegren, and R. G. Finke (2000). Inorg. Chim. Acta 300, 285.CrossRefGoogle Scholar
  51. 51.
    P. J. Domaille (1990). Inorg. Synth. 27, 100.Google Scholar
  52. 52.
    R. Contant (1990). Inorg. Synth. 27, 108.Google Scholar
  53. 53.
    G. M. Sheldrick, SADABS (University of Göttingen, Germany, 1996).Google Scholar
  54. 54.
    G. M. Sheldrick, SHELXS-97 and SHELXL-97 (University of Göttingen, Germany, 1997).Google Scholar
  55. 55.
    I. D. Brown and D. Altermatt (1985). Acta Crst. B41, 244.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ghada Al-Kadamany
    • 1
  • Bassem S. Bassil
    • 1
  • Farah Raad
    • 1
  • Ulrich Kortz
    • 1
  1. 1.Jacobs University, School of Engineering and ScienceBremenGermany

Personalised recommendations