Advertisement

Journal of Cluster Science

, Volume 24, Issue 3, pp 787–798 | Cite as

Synthesis, Crystal Structure, Luminescence, and Magnetic Properties of a New 4d–4f Heterometallic Architecture Based on Pyridine-3,4-Dicarboxylic Acid

  • Guang-Xiang LiuEmail author
Original Paper

Abstract

A 4d–4f heterometallic coordination polymer, [AgEu(pydc)2]·2H2O (1) (H2pydc = pyridine-3,4-dicarboxylic acid), has been synthesized under hydrothermal conditions, and further characterized by elemental analysis, IR, thermogravimetric analysis and single-crystal X-ray diffraction. Complex 1 features a three-dimensional framework containing one-dimensional (1D) channels occupied by free water molecules, which is constructed from 1D inorganic heterometallic chains and linear pydc linkers. After removal of the water molecules from complex 1, the remaining material has high thermal stability. Moreover, the photoluminescence, and magnetic properties of 1 were also investigated.

Keywords

Heterometallic coordination polymer Pyridine-3,4-dicarboxylic acid Crystal structure Luminescence Magnetism 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21271106), the Key Project of Chinese Ministry of Education (No. 210102) and the Qing Lan Project of Jiangsu Provincial Department of Education.

Supplementary material

10876_2013_573_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. 1.
    Y. Z. Zheng, M. Evangelisti, and R. E. P. Winpenny (2011). Chem. Sci. 2, 99.CrossRefGoogle Scholar
  2. 2.
    Y. J. Cui, Y. F. Yue, G. D. Qian, and B. L. Chen (2012). Chem. Rev. 112, 1126.CrossRefGoogle Scholar
  3. 3.
    H. L. Cui, S. Z. Zhan, M. Li, S. W. Ng, and D. Li (2011). Dalton Trans. 40, 6490.CrossRefGoogle Scholar
  4. 4.
    P. Mahata, K. V. Ramya, and S. Natarajan (2009). Inorg. Chem. 48, 4942.CrossRefGoogle Scholar
  5. 5.
    S. Handa, V. Gnanadesikan, S. Matsunaga, and M. Shibasaki (2010). J. Am. Chem. Soc. 132, 4925.CrossRefGoogle Scholar
  6. 6.
    Z. Y. Li, J. W. Dai, S. T. Yue, and Y. L. Liu (2010). CrystEngComm 12, 2014.CrossRefGoogle Scholar
  7. 7.
    Y. Liu, M. Pan, Q. Y. Yang, L. Fu, K. Li, S. C. Wei, and C. Y. Su (2012). Chem. Mater. 24, 1954.CrossRefGoogle Scholar
  8. 8.
    Y. C. Huang, F. L. Jiang, and M. C. Hong (2009). Coord. Chem. Rev. 253, 2814.CrossRefGoogle Scholar
  9. 9.
    T. K. Prasad and M. V. Rajasekharan (2008). Cryst. Growth Des. 8, 1346.CrossRefGoogle Scholar
  10. 10.
    J. W. Cheng, J. Zhang, S. T. Zheng, M. B. Zhang, and G. Y. Yang (2006). Angew. Chem. Int. Ed. 45, 73.CrossRefGoogle Scholar
  11. 11.
    J. J. Zhang, S. M. Hu, S. C. Xiang, T. L. Sheng, X. T. Wu, and Y. M. Li (2006). Inorg. Chem. 45, 7173.CrossRefGoogle Scholar
  12. 12.
    P. Mahata, G. Sankar, G. Madras, and S. Natarajan (2005). Chem. Commun. 41, 5787.CrossRefGoogle Scholar
  13. 13.
    M. Sassaki, K. Manseki, H. Horiuchi, M. Kumagai, M. Sakamoto, H. Sakiyama, Y. Nishida, Y. Sadaoka, M. Ohba, and H. Okawa (2000). J. Chem. Soc. Dalton Trans. 29, 259.CrossRefGoogle Scholar
  14. 14.
    J. J. Zhang, S. M. Hu, L. M. Zheng, X. T. Wu, Z. Y. Fu, J. C. Dai, W. X. Du, H. H. Zhang, and R. Q. Sun (2002). Chem. Eur. J. 8, 5742.CrossRefGoogle Scholar
  15. 15.
    J. J. Zhang, S. Q. Xia, T. L. Sheng, S. M. Hu, G. Leibeling, F. Meyer, X. T. Wu, S. C. Xiang, and R. B. Fu (2004). Chem. Commun. 40, 1186.CrossRefGoogle Scholar
  16. 16.
    X. F. Li, Y. B. Huang, H. J. Zhao, and Q. H. Zeng (2012). Inorg. Chem. Commun. 23, 132.CrossRefGoogle Scholar
  17. 17.
    X. F. Li, Y. B. Huang, and R. Cao (2012). Dalton Trans. 41, 6195.CrossRefGoogle Scholar
  18. 18.
    Y. C. Qiu, H. G. Liu, Y. Ling, H. Deng, R. H. Zeng, G. Y. Zhou, and M. Zeller (2007). Inorg. Chem. Commun. 18, 1399.CrossRefGoogle Scholar
  19. 19.
    Y. B. Dong, J. Y. Cheng, J. P. Ma, and R. Q. Huang (2005). Cryst. Growth Des. 5, 585.CrossRefGoogle Scholar
  20. 20.
    X. J. Gu and D. F. Xue (2007). Cryst. Growth Des. 7, 1726.CrossRefGoogle Scholar
  21. 21.
    X. L. Wang, C. Qin, E. B. Wang, Y. G. Li, N. Hao, C. W. Hu, and L. Xu (2004). Inorg. Chem. 43, 1850.CrossRefGoogle Scholar
  22. 22.
    M. L. Tong, J. Wang, and S. Hu (2005). J. Solid State Chem. 178, 1518.CrossRefGoogle Scholar
  23. 23.
    M. L. Tong, S. Kitagawa, H. C. Chang, and M. Ohba (2004). Chem. Commun. 40, 418.CrossRefGoogle Scholar
  24. 24.
    H. H. Song and Y. J. Li (2008). Inorg. Chim. Acta 361, 1421.CrossRefGoogle Scholar
  25. 25.
    D. Ang, G. B. Deacon, P. C. Junk, and D. R. Turner (2007). Polyhedron 26, 385.CrossRefGoogle Scholar
  26. 26.
    X. J. Gu and D. F. Xue (2007). CrystEngComm 9, 471.CrossRefGoogle Scholar
  27. 27.
    G. X. Liu (2012). J. Rare Earths 30, 716.CrossRefGoogle Scholar
  28. 28.
    O. Kahn Molecular Magnetism (VCH, New York, 1993).Google Scholar
  29. 29.
    SAINT (version 6.02a) (Bruker AXS Inc., Madison, 2002).Google Scholar
  30. 30.
    G. M. Sheldrick SADABS, Program for Siemens Area Detector Absorption Corrections (University of Göttingen, Göttingen, 1997).Google Scholar
  31. 31.
    G. M. Sheldrick SHELXS97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, 1997).Google Scholar
  32. 32.
    G. M. Sheldrick SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, 1997).Google Scholar
  33. 33.
    X. D. Zhu, S. Y. Gao, Y. F. Li, H. X. Yang, G. L. Li, B. Xu, and R. Cao (2009). J. Solid State Chem. 182, 421.CrossRefGoogle Scholar
  34. 34.
    H. H. Song, Y. J. Li, Y. Song, Z. G. Hang, and F. Yang (2008). J. Solid State Chem. 181, 1017.CrossRefGoogle Scholar
  35. 35.
    Y. J. Li, H. H. Song, T. Wang, and M. Y. Jia (2008). Chem. Lett. 37, 692.CrossRefGoogle Scholar
  36. 36.
    X. J. Gu and D. F. Xue (2006). Cryst. Growth Des. 6, 2551.CrossRefGoogle Scholar
  37. 37.
    A. L. Spek (2003). J. Appl. Crystallogr. 36, 7.CrossRefGoogle Scholar
  38. 38.
    L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini, and E. Tondello (2010). Coord. Chem. Rev. 254, 487.CrossRefGoogle Scholar
  39. 39.
    S. V. Eliseeva and J. C. G. Bünzli (2010). Chem. Soc. Rev. 39, 189.CrossRefGoogle Scholar
  40. 40.
    A. de Bettencourt-Dias and S. Viswanathan (2004). Chem. Commun. 40, 1024.CrossRefGoogle Scholar
  41. 41.
    C. Peng, H. Zhang, J. Yu, Q. Meng, L. Fu, H. Li, L. Sun, and X. Guo (2005). J. Phys. Chem. B 109, 15278.CrossRefGoogle Scholar
  42. 42.
    C. Duan, M. Yin, K. Yan, and M. F. Reid (2000). J. Alloys Compd. 303–305, 371.CrossRefGoogle Scholar
  43. 43.
    C. Duan, S. Xia, W. Zhang, M. Yin, and J. C. Krupa (1998). J. Alloys Compd. 275, 450.CrossRefGoogle Scholar
  44. 44.
    L. Sorace, C. Benelli, and D. Gatteschi (2011). Chem. Soc. Rev. 40, 3092.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Biochemical and Environmental EngineeringNanjing Xiaozhuang UniversityNanjingPeople’s Republic of China

Personalised recommendations