Advertisement

Journal of Cluster Science

, Volume 24, Issue 2, pp 497–513 | Cite as

Influence of Hydrogen Bonding and Polarity on the Spectral Properties of 4-Aminophthalimide Clusters Formed with Triethylamine and Dimethyl Sulfoxide in Solution

  • Dapeng Yang
  • Xiang Li
  • Yufang Liu
Original Paper

Abstract

The time-dependent density functional theory (TDDFT) method has been carried out to study the influences of hydrogen bonding and solvent polarity on the spectral properties of 4-aminophthalimide (4AP) clusters formed with hydrogen-accepting solvents triethylamine (TEA) and dimethyl sulfoxide (DMSO). The ground- and S1-state geometry structure optimizations, hydrogen bond energies, absorption and emission spectra for both the 4AP monomer and its two triply hydrogen-bonded clusters 4AP + (TEA)3 and 4AP + (DMSO)3 have been calculated using DFT and TDDFT methods respectively with the hybrid exchange correlation functional PBE1PBE and split-valence basis set 6-311++G(d,p). It has been demonstrated that the two hydrogen bonds I and II formed with the amine group of 4AP are significantly strengthened while the hydrogen bond III formed with the imide group is slightly weakened due to the intramolecular charge transfer from the amine group to the two carbonyl groups of the 4AP molecule upon photoexcitation. In addition, the hydrogen bonds formed by 4AP with DMSO are stronger than those formed with TEA, which together with its strong polarity, should be the main reasons for the more redshifts of both the absorption and the fluorescence spectra of 4AP in solvent DMSO than those in TEA.

Keywords

Hydrogen-bonded cluster Excited-state hydrogen bonding Polarity Spectral properties TDDFT 

Notes

Acknowledgments

This work was supported by the Innovation Scientists and Technicians Troop Construction Projects of Henan Province of China (Grant No. 124200510013) and the National Natural Science Foundation of China (Grant No. 11274096).

References

  1. 1.
    P. F. McGarry, S. Jockusch, Y. Fujiwara, N. A. Kaprinidis, and N. J. Turro (1997). J. Phys. Chem. A 101, 764.CrossRefGoogle Scholar
  2. 2.
    K.-L. Han and G.-J. Zhao Hydrogen Bonding and Transfer in the Excited State (Wiley, Chichester, 2010).CrossRefGoogle Scholar
  3. 3.
    G.-J. Zhao and K.-L. Han (2012). Acc. Chem. Res. 45, 404.CrossRefGoogle Scholar
  4. 4.
    M.-X. Zhang and G.-J. Zhao (2012). ChemSusChem 5, 879.CrossRefGoogle Scholar
  5. 5.
    E. Pines, D. Pines, Y.-Z. Ma, and G. R. Fleming (2004). ChemPhysChem 5, 1315.CrossRefGoogle Scholar
  6. 6.
    G.-J. Zhao and K.-L. Han (2008). Biophys. J. 94, 38.CrossRefGoogle Scholar
  7. 7.
    S. M. Borisov and O. S. Wolfbeis (2008). Chem. Rev. 108, 423.CrossRefGoogle Scholar
  8. 8.
    F.-B. Yu, P. Li, G.-Y. Li, G.-J. Zhao, T.-S. Chu, and K.-L. Han (2011). J. Am. Chem. Soc. 133, 11030.CrossRefGoogle Scholar
  9. 9.
    M. J. Kamlet and R. W. Taft (1976). J. Am. Chem. Soc. 98, 377.CrossRefGoogle Scholar
  10. 10.
    M. Maroncelli and G. R. Fleming (1987). J. Chem. Phys. 86, 6221.CrossRefGoogle Scholar
  11. 11.
    J. Kim, U. W. Schmit, J. A. Gruetzmaher, G. A. Voth, and N. E. Scherer (2002). J. Chem. Phys. 116, 737.CrossRefGoogle Scholar
  12. 12.
    W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma (1998). Annu. Rev. Phys. Chem. 49, 99.CrossRefGoogle Scholar
  13. 13.
    G.-J. Zhao, B. H. Northrop, K.-L. Han, and P. J. Stang (2010). J. Phys. Chem. A 114, 9007.CrossRefGoogle Scholar
  14. 14.
    G.-J. Zhao and K.-L. Han (2007). J. Chem. Phys. 127, 024306.CrossRefGoogle Scholar
  15. 15.
    N. Mataga, H. Chosrowjan, and S. Taniguchi (2005). J. Photochem. Photobiol. C 6, 37.CrossRefGoogle Scholar
  16. 16.
    G.-J. Zhao, K.-L. Han, and P. J. Stang (2009). J. Chem. Theory Comput. 5, 1955.CrossRefGoogle Scholar
  17. 17.
    G.-J. Zhao and K.-L. Han (2008). ChemPhysChem 9, 1842.CrossRefGoogle Scholar
  18. 18.
    D. Laage and J. T. Hynes (2007). Proc. Natl. Acad. Sci. USA 104, 11167.CrossRefGoogle Scholar
  19. 19.
    G.-J. Zhao and K.-L. Han (2008). J. Comput. Chem. 29, 2010.CrossRefGoogle Scholar
  20. 20.
    G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 9218.CrossRefGoogle Scholar
  21. 21.
    Y.-H. Liu, G.-J. Zhao, G.-Y. Li, and K.-L. Han (2010). J. Photochem. Photobiol. A 209, 181.CrossRefGoogle Scholar
  22. 22.
    G.-J. Zhao and K.-L. Han (2009). J. Phys. Chem. A 113, 14329.CrossRefGoogle Scholar
  23. 23.
    G.-J. Zhao, J.-Y. Liu, L.-C. Zhou, and K.-L. Han (2007). J. Phys. Chem. B 111, 8940.CrossRefGoogle Scholar
  24. 24.
    N.-N. Wei, C. Hao, Z.-L. Xiu, J.-W. Chen, and J.-S. Qiu (2010). J. Comput. Chem. 31, 2853.Google Scholar
  25. 25.
    Y.-F. Liu, C.-F. Zhang, Y.-G. Yang, D.-P. Yang, D.-H. Shi, and J.-F. Sun (2012). J. Clust. Sci. 23, 1029.CrossRefGoogle Scholar
  26. 26.
    R. Wang, C. Hao, P. Li, N.-N. Wei, J.-W. Chen, and J.-S. Qiu (2010). J. Comput. Chem. 31, 2157.CrossRefGoogle Scholar
  27. 27.
    G.-J. Zhao and K.-L. Han (2007). J. Phys. Chem. A 111, 2469.CrossRefGoogle Scholar
  28. 28.
    E. Krystkowiak, K. Dobek, and A. Maciejewski (2006). J. Photochem. Photobiol. A 184, 250.CrossRefGoogle Scholar
  29. 29.
    A. Maciejewski, E. Krystkowiak, J. Koput, and K. Dobek (2011). ChemPhysChem 12, 322.CrossRefGoogle Scholar
  30. 30.
    R. J. Cave, K. Burke, and E. W. Castner Jr. (2002). J. Phys. Chem. A 106, 9294.CrossRefGoogle Scholar
  31. 31.
    D. Jacquemin, E. A. Perpete, X. Assfeld, G. Scalmani, M. J. Frisch, and C. Adamo (2007). Chem. Phys. Lett. 438, 208.CrossRefGoogle Scholar
  32. 32.
    R. Improta, V. Barone, G. Scanlmaini, and M. J. Frisch (2006). J. Chem. Phys. 125, 054103.CrossRefGoogle Scholar
  33. 33.
    R. Improta, G. Scalmani, M. J. Frisch, and V. Barone (2007). J. Chem. Phys. 127, 074504.CrossRefGoogle Scholar
  34. 34.
    W.-W. Zhao, Y.-H. Ding, and Q.-Y. Xia (2011). J. Comput. Chem. 32, 545.CrossRefGoogle Scholar
  35. 35.
    S. I. Gorelsky, SWizard Program (University of Ottawa, Ottawa, 2012). http://www.sg-chem.net/.
  36. 36.
    S. I. Gorelsky and A. B. P. Lever (2001). J. Organomet. Chem. 635, 187.CrossRefGoogle Scholar
  37. 37.
    D. Jacquemin, E. Perpete, I. Ciofini, and C. Adamo (2009). Acc. Chem. Res. 42, 326.CrossRefGoogle Scholar
  38. 38.
    J. Tomasi, B. Mennucci, and R. Cammi (2005). Chem. Rev. 105, 2999.CrossRefGoogle Scholar
  39. 39.
    M. Cossi, N. Rega, G. Scalmani, and V. Barone (2003). J. Comput. Chem. 24, 669.CrossRefGoogle Scholar
  40. 40.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hrat-chian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dan-nenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowskiand, and D. J. Fox Gaussian 09, Revision A02 (Gaussian Inc., Wallingford, 2009).Google Scholar
  41. 41.
    P. A. Hunt, B. Kirchner, and T. Welton (2006). Chem. Eur. J. 12, 6762.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Physics LaboratoryNorth China University of Water Resources and Electric PowerZhengzhouPeople’s Republic of China
  2. 2.Department of Electronic EngineeringHenan Economy and Trade Vocational CollegeZhengzhouPeople’s Republic of China
  3. 3.Department of PhysicsHenan Normal UniversityXinxiangPeople’s Republic of China

Personalised recommendations