Journal of Cluster Science

, Volume 23, Issue 3, pp 939–951 | Cite as

Diethyltin-Containing Tungstoarsenate(V), [{Sn(C2H5)2}3(H2O)6(A–α–AsVW9O34)]3−

  • Luis Fernando Piedra-Garza
  • Maria Barsukova-Stuckart
  • Bassem S. Bassil
  • Rami Al-Oweini
  • Ulrich Kortz
Original Paper

Abstract

Reaction of (C2H5)2SnCl2 with the trilacunary 9-tungstoarsenate(V) [A–α–AsW9O34]9− in aqueous pH 5 medium resulted in the diethyltin-containing polyanion [{Sn(C2H5)2}3(H2O)6(A–α–AsVW9O34)]3− (1), which crystallized as a hydrated guanidinium salt, [C(NH2)3]3[{Sn(C2H5)2}3(H2O)4(A–α–AsVW9O34)]·9H2O (1a). Polyanion 1 represents the first example of a diethyltin-containing polyanion. The diethyltin groups are bound to the trilacunary Keggin units via two Sn–O(W) bonds involving edge-shared WO6 octahedra. Each Sn atom also has two terminal, cis-related water ligands, and two terminal, trans-related ethyl groups. Multinuclear (1H, 13C, 119Sn, 183W) NMR spectrometry indicated that polyanion 1 is stable in solution. Compound 1a was structurally characterized in the solid state by single-crystal XRD, FT-IR, as well as thermogravimetric and elemental analyses. Single-crystal X-ray analysis showed that 1a crystallizes in the orthorhombic system, space group Pnma, with a = 23.5280(10) Å, b = 15.5435(6) Å, c = 18.6191(9) Å, V = 6809.1(5) Å3 and Z = 4. The structure of 1a is an extended 2D assembly of individual polyanion units 1 linked via Sn–O(W) bridges.

Keywords

Polyoxometalates Organotin compounds Organic–inorganic hybrid materials Multinuclear NMR spectroscopy Structure elucidation Tungsten 

Supplementary material

10876_2012_501_MOESM1_ESM.docx (383 kb)
Supplementary material 1 (DOCX 382 kb)

References

  1. 1.
    M. T. Pope Heteropoly- and Isopoly-Oxometalates (Springer, Berlin, 1983).Google Scholar
  2. 2.
    M. T. Pope and A. Müller (1991). Angew. Chem. Int. Ed. 30, 34.CrossRefGoogle Scholar
  3. 3.
    M. T. Pope and A. Müller (eds.) Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity (Kluwer, Dordrecht, 1994).Google Scholar
  4. 4.
    C. L. Hill (ed.) (1998). Chem. Rev. 98, 1.Google Scholar
  5. 5.
    M. T. Pope and A. Müller (eds.) Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications (Kluwer, Dordrecht, 2001).Google Scholar
  6. 6.
    T. Yamase and M. T. Pope (eds.) Polyoxometalate Chemistry for Nano-Composite Design (Kluwer, Dordrecht, 2002).Google Scholar
  7. 7.
    J. J. Borrás-Almenar, E. Coronado, A. Müller and M. T. Pope (eds.) Polyoxometalate Molecular Science (Kluwer, Dordrecht, 2003).Google Scholar
  8. 8.
    S. S. Talismanov and I. L. Eremenko (2003). Russ. Chem. Rev. 72, 555.CrossRefGoogle Scholar
  9. 9.
    L. Cronin, in J. A. McCleverty and T. J. Meyer (eds.), Comprehensive Coordination Chemistry II, vol. 7, (Elsevier, Amsterdam, 2004).Google Scholar
  10. 10.
    U. Kortz (guest ed.) (2009). Special issue on polyoxometalates, Eur. J. Inorg. Chem. 34, 1.Google Scholar
  11. 11.
    D.-L. Long, R. Tsunashima, and L. Cronin (2010). Angew. Chem. Int. Ed. 49, 1736.CrossRefGoogle Scholar
  12. 12.
    A. Proust, R. Thouvenot, and P. Gouzerh (2008). Chem. Commun. 1837. doi:10.1039/B715502F
  13. 13.
    B. Hasenknopf, K. Micoine, E. Lacôte, S. Thorimbert, M. Malacria, and R. Thouvenot (2008). Eur. J. Inorg. Chem. 5001. doi:10.1002/ejic.200800759
  14. 14.
    A. Dolbecq, E. Dumas, C. R. Mayer, and P. Mialane (2010). Chem. Rev. 110, 6009.CrossRefGoogle Scholar
  15. 15.
    F. Zonnevijlle and M. T. Pope (1979). J. Am. Chem. Soc. 101, 2731.CrossRefGoogle Scholar
  16. 16.
    F. Xin and M. T. Pope (1994). Organometallics 13, 4881.CrossRefGoogle Scholar
  17. 17.
    F. Xin and M. T. Pope (1996). Inorg. Chem. 35, 5693.CrossRefGoogle Scholar
  18. 18.
    F. Xin, M. T. Pope, G. J. Long, and U. Russo (1996). Inorg. Chem. 35, 1207.CrossRefGoogle Scholar
  19. 19.
    G. Sazani, M. H. Dickman, and M. T. Pope (2000). Inorg. Chem. 39, 939.CrossRefGoogle Scholar
  20. 20.
    G. Sazani and M. T. Pope (2004). Dalton Trans. 1989. doi:10.1039/B402421D
  21. 21.
    N. Belai and M. T. Pope (2006). Polyhedron 25, 2015.CrossRefGoogle Scholar
  22. 22.
    W. H. Knoth (1979). J. Am. Chem. Soc. 101, 759.CrossRefGoogle Scholar
  23. 23.
    W. H. Knoth (1979). J. Am. Chem. Soc. 101, 2211.CrossRefGoogle Scholar
  24. 24.
    W. H. Knoth, P. J. Domaille, and D. C. Roe (1983). Inorg. Chem. 22, 818.CrossRefGoogle Scholar
  25. 25.
    W. H. Knoth, P. J. Domaille, and R. D. Farlee (1985). Organometallics. 4, 62.CrossRefGoogle Scholar
  26. 26.
    Q. H. Yang, H. C. Dai, and J. F. Liu (1998). Transition Met. Chem. 23, 93.CrossRefGoogle Scholar
  27. 27.
    X. H. Wang, H. C. Dai, and J. F. Liu (1999). Polyhedron. 18, 2293.CrossRefGoogle Scholar
  28. 28.
    X. H. Wang, H. C. Dai, and J. F. Liu (1999). Transition Met. Chem. 24, 600.CrossRefGoogle Scholar
  29. 29.
    X. H. Wang and J. F. Liu (2000). J. Coord. Chem. 51, 73.CrossRefGoogle Scholar
  30. 30.
    X. H. Wang, J. T. Liu, R. C. Zhang, B. Li, and J. F. Liu (2002). Main Group Met. Chem. 25, 535.CrossRefGoogle Scholar
  31. 31.
    S. Bareyt, S. Piligkos, B. Hasenknopf, P. Gouzerh, E. Lacote, S. Thorimbert, and M. Malacria (2003). Angew. Chem. Int. Ed. 42, 3404.CrossRefGoogle Scholar
  32. 32.
    S. Bareyt, S. Piligkos, B. Hasenknopf, P. Gouzerh, E. Lacote, S. Thorimbert, and M. Malacria (2005). J. Am. Chem. Soc. 127, 6788.CrossRefGoogle Scholar
  33. 33.
    K. Micoine, S. Thorimbert, E. Lacote, M. Malacria, and B. Hasenknopf (2007). Organic Lett. 9, 3981.CrossRefGoogle Scholar
  34. 34.
    C. Boglio, K. Micoine, E. Derat, R. Thouvenot, B. Hasenknopf, S. Thorimbert, E. Lacôte, and M. Malacria (2008). J. Am. Chem. Soc. 130, 4553.CrossRefGoogle Scholar
  35. 35.
    K. Micoine, B. Hasenknopf, S. Thorimbert, E. Lacôte, and M. Malacria (2009). Angew. Chem. Int. Ed. 48, 3466.CrossRefGoogle Scholar
  36. 36.
    F. Hussain, M. Reicke, and U. Kortz (2004). Eur. J. Inorg. Chem. 2733. doi:10.1002/ejic.200400059
  37. 37.
    U. Kortz, F. Hussain, and M. Reicke (2005). Angew. Chem. Int. Ed. 44, 3773.CrossRefGoogle Scholar
  38. 38.
    F. Hussain and U. Kortz (2005). Chem. Commun. 1191. doi:10.1039/B415901B
  39. 39.
    F. Hussain, U. Kortz, B. Keita, L. Nadjo, and M. T. Pope (2006). Inorg. Chem. 45, 761.CrossRefGoogle Scholar
  40. 40.
    S. Reinoso, M. H. Dickman, M. F. Matei, and U. Kortz (2007). Inorg. Chem. 46, 4383.CrossRefGoogle Scholar
  41. 41.
    S. Reinoso, M. H. Dickman, M. Reicke, and U. Kortz (2006). Inorg. Chem. 45, 10422.CrossRefGoogle Scholar
  42. 42.
    S. Reinoso, M. H. Dickman, M. Reicke, and U. Kortz (2006). Inorg. Chem. 45, 9014.CrossRefGoogle Scholar
  43. 43.
    F. Hussain, M. H. Dickman, U. Kortz, B. Keita, L. Nadjo, A. Khitrov, and A. G. Marshall (2007). J. Clust. Sci. 18, 173.CrossRefGoogle Scholar
  44. 44.
    S. Reinoso, M. H. Dickman, A. Praetorius, L. F. Piedra-Garza, and U. Kortz (2008). Inorg. Chem. 47, 8798.CrossRefGoogle Scholar
  45. 45.
    L. F. Piedra-Garza, S. Reinoso, M. H. Dickman, M. M. Sanguineti, and U. Kortz (2009), Dalton Trans. 6231. doi:10.1039/B908436C
  46. 46.
    S. Reinoso, M. H. Dickman, and U. Kortz (2009). Eur. J. Inorg. Chem. 947. doi:10.1002/ejic.200801096
  47. 47.
    S. Reinoso, L. F. Piedra-Garza, M. H. Dickman, A. Praetorius, M. Biesemans, R. Willem, and U. Kortz (2010). Dalton Trans. 39, 248. doi:10.1039/B910889K
  48. 48.
    S. Reinoso, B. S. Bassil, M. Barsukova, and U. Kortz (2010). Eur. J. Inorg. Chem. 2537. doi:10.1002/ejic.201000185
  49. 49.
    I. Bar-Nahum, J. Ettedgui, L. Konstantinovski, V. Kogan, and R. Neumann (2007). Inorg. Chem. 46, 5798.CrossRefGoogle Scholar
  50. 50.
    R. Khoshnavazi and L. Bahrami (2009). J. Coord. Chem. 62, 2067.CrossRefGoogle Scholar
  51. 51.
    L.-C. Zhang, S.-L. Zheng, H. Xue, Z.-M. Zhu, W.-S. You, Y.-G. Li, and E. Wang (2010). Dalton Trans. 39, 3369.CrossRefGoogle Scholar
  52. 52.
    L.-C. Zhang, H. Xue, Z.-M. Zhu, Q.-X. Wang, W.-S. You, Y.-G. Li, and E.-B. Wang (2010). Inorg. Chem. Comm. 13, 609.CrossRefGoogle Scholar
  53. 53.
    A. Yokoyama, T. Kojima, K. Ohkubo, M. Shiro, and S. Fukuzumi (2011). J. Phys. Chem. A. 115, 986.CrossRefGoogle Scholar
  54. 54.
    Z. Dong, R. Tan, J. Cao, Y. Yang, C. Kong, J. Du, S. Zhu, Y. Zhang, J. Lu, B. Huang, and S. Liu (2011). Eur. J. Med. Chem. 46, 2477.CrossRefGoogle Scholar
  55. 55.
    B. Kandasamy, C. Wills, W. McFarlane, W. Clegg, R. W. Harrington, A. Rodríguez-Fortea, J. M. Poblet, P. G. Bruce, and R. J. Errington (2012). Chem. Eur. J. 18, 59.CrossRefGoogle Scholar
  56. 56.
    Z.-J. Wang, L.-C. Zhang, Z.-M. Zhu, W.-L. Chen, W.-S. You, and E.-B. Wang (2012). Inorg. Chem. Comm. 17, 151.CrossRefGoogle Scholar
  57. 57.
    L. H. Bi, R. D. Huang, J. Peng,; E. B. Wang, Y. H. Wang, and C. W. Hu (2001). J. Chem. Soc., Dalton Trans. 121. doi:10.1039/B006804G
  58. 58.
    G. M. Sheldrick SADABS (University of Göttingen, Göttingen, 1996).Google Scholar
  59. 59.
    G. M. Sheldrick SHELX-97 Program System for Crystal Structure Determination and Refinement (University of Göttingen, Göttingen, 1997).Google Scholar
  60. 60.
    I. D. Brown and D. Altermatt (1985). Acta Cryst. B41, 244.Google Scholar
  61. 61.
    K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1997).Google Scholar
  62. 62.
    E. Pretsch, P. Bühlmann, C. Affolter, and M. Badertscher Spektroskopische Daten zur Strukturaufklärung organischer Verbindungen (Springer, Berlin, 2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Luis Fernando Piedra-Garza
    • 1
  • Maria Barsukova-Stuckart
    • 1
  • Bassem S. Bassil
    • 1
  • Rami Al-Oweini
    • 1
  • Ulrich Kortz
    • 1
  1. 1.School of Engineering and ScienceJacobs UniversityBremenGermany

Personalised recommendations