Advertisement

Journal of Cluster Science

, Volume 23, Issue 3, pp 703–711 | Cite as

DFT and QTAIM Study of Intramolecular and Intermolecular Fe–Hδ−···Hδ+–O Dihydrogen Bonds

  • Xinzheng Yang
Original Paper

Abstract

The geometric structures of three recently discovered iron complexes with one intramolecular and two intermolecular Fe–Hδ−···Hδ+–O dihydrogen bonds are optimized using the density functional theory. Then the topology of electron densities and charge distributions in optimized structures were analyzed using Bader’s quantum theory of atoms in molecules method. The Hδ−···Hδ+ distances in three optimized structures are 1.415, 1.549 and 1.608 Å, respectively, much shorter than the H···H distances of 1.7–2.2 Å in most M–H···H–X dihydrogen bonds discovered so far. The corresponding electron densities at the bond critical points between those Hδ−···Hδ+ pairs are 0.047, 0.031, and 0.029, respectively. Such short Hδ−···Hδ+ distances and high electron density between Hδ− and Hδ+ indicate that the Fe–Hδ−···Hδ+–O bonds have unusually strong interactions between hydridic Feδ+–Hδ− hydrogen and protonic Oδ−–Hδ+ hydrogen. Selected molecular orbitals that show the H···H interactions are also analyzed. Quantum theory of atoms in molecules analysis indicates that the intramolecular Fe–Hδ−···Hδ+–O dihydrogen bonds with a Hδ−···Hδ+ distance of 1.415 Å is much stronger than those two intermolecular dihydrogen bonds.

Keywords

Dihydrogen bond Iron Hydrogenase Density functional theory Quantum theory of atoms in molecules 

Notes

Acknowledgments

This work was supported by the Molecular Graphics and Computation Facility (Dr. Kathleen A. Durkin, Director) in the College of Chemistry at University of California, Berkeley, and by the US National Science Foundation (CHE-0840505) for the computational devices.

References

  1. 1.
    S. J. Grabowski (ed.) Hydrogen Bonding—New Insights (Springer, Dordrecht, 2006).Google Scholar
  2. 2.
    G. A. Jeffrey and W. Saenger (eds.) Hydrogen Bonding in Biology and Chemistry (Springer-Verlag, Berlin, 1991).Google Scholar
  3. 3.
    M. P. Brown and R. W. Heseltine (1968). Chem. Commun. 1551.Google Scholar
  4. 4.
    M. P. Brown, R. W. Heseltine, P. A. Smith, and P. J. Walker (1970). J. Chem. Soc. A 410.Google Scholar
  5. 5.
    G. J. Kubas (2007). Chem. Rev. 107, 4152.CrossRefGoogle Scholar
  6. 6.
    R. H. Crabtree (1998). J. Organomet. Chem. 577, 111.CrossRefGoogle Scholar
  7. 7.
    R. H. Crabtree, P. E. M. Siegbahn, O. Eisenstein, A. L. Rheingold, and T. F. Koetzle (1996). Acc. Chem. Res. 29, 348.CrossRefGoogle Scholar
  8. 8.
    A. J. Lough, S. Park, R. Ramachandran, and R. H. Morris (1994). J. Am. Chem. Soc. 116, 8356.CrossRefGoogle Scholar
  9. 9.
    E. Peris, J. C. Lee Jr, J. R. Rambo, O. Eisenstein, and R. H. Crabtree (1995). J. Am. Chem. Soc. 117, 3485.CrossRefGoogle Scholar
  10. 10.
    Q. Liu and R. Hoffmann (1995). J. Am. Chem. Soc. 117, 10108.CrossRefGoogle Scholar
  11. 11.
    J. C. Lee Jr, E. Peris, A. L. Rheingold, and R. H. Crabtree (1994). J. Am. Chem. Soc. 116, 11014.CrossRefGoogle Scholar
  12. 12.
    F. A. Jalon, B. R. Manzano, A. Caballero, M. C. Carrion, L. Santos, G. Espino, and M. Moreno (2005). J. Am. Chem. Soc. 127, 15364.CrossRefGoogle Scholar
  13. 13.
    C. P. Lau, S. M. Ng, G. Jia, and Z. Lin (2007). Coord. Chem. Rev. 251, 2223.CrossRefGoogle Scholar
  14. 14.
    R. Custelcean and J. E. Jackson (2001). Chem. Rev. 101, 1963.CrossRefGoogle Scholar
  15. 15.
    G.-J. Zhao and K.-L. Han (2007). J. Phys. Chem. A 111, 2469.CrossRefGoogle Scholar
  16. 16.
    G.-J. Zhao and K.-L. Han (2007). Acc. Chem. Res. 45, 404.CrossRefGoogle Scholar
  17. 17.
    H.-J. Fan and M. B. Hall (2001). J. Am. Chem. Soc. 123, 3828.CrossRefGoogle Scholar
  18. 18.
    M. G. Basallote, M. Besora, C. E. Castillo, J. Fernandez-Trujillo, A. Lledos, F. Maseras, and M. A. Manez (2007). J. Am. Chem. Soc. 129, 6608.CrossRefGoogle Scholar
  19. 19.
    X. Yang and M. B. Hall (2008). J. Am. Chem. Soc. 130, 14036.CrossRefGoogle Scholar
  20. 20.
    X. Yang and M. B. Hall (2009). J. Am. Chem. Soc. 131, 10901.CrossRefGoogle Scholar
  21. 21.
    X. Yang (2011). ACS Catal. 1, 849.CrossRefGoogle Scholar
  22. 22.
    X. Yang (2011). Inorg. Chem. 50, 12836.CrossRefGoogle Scholar
  23. 23.
    M. A. Rida and A. K. Smith, in J. Leigh and N. Winterton (eds.), Modern Coordination Chemistry: The Legacy of Joseph Chatt (The Royal Society of Chemistry, Cambridge, 2002), 31–44 pp.Google Scholar
  24. 24.
    R. F. W. Bader Atoms in Molecules: A Quantum Theory (Clarendon, Oxford, 1990).Google Scholar
  25. 25.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision C.01 (Gaussian, Inc., Wallingford CT, 2010).Google Scholar
  26. 26.
    J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria (2003). Phys. Rev. Lett. 91, 146401.CrossRefGoogle Scholar
  27. 27.
    J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun (2009). Phys. Rev. Lett. 103, 026403.CrossRefGoogle Scholar
  28. 28.
    W. J. Hehre, R. Ditchfield, and J. A. Pople (1972). J. Chem. Phys. 56, 2257.CrossRefGoogle Scholar
  29. 29.
    P. C. Hariharan and J. A. Pople (1973). Theor. Chim. Acta 28, 213.CrossRefGoogle Scholar
  30. 30.
    R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980). J. Chem. Phys. 72, 650.CrossRefGoogle Scholar
  31. 31.
    T. A. Keith, AIMAll Version 11.12.19, (TK Gristmill Software, Overland Park, KS, USA, 2011).Google Scholar
  32. 32.
    J. Manson, C. E. Webster, and M. B. Hall, JIMP2, version 0.091, a free program for visualizing and manipulating molecules, (Texas A&M University, College Station, TX, 2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Molecular Graphics and Computation Facility, College of ChemistryUniversity of CaliforniaBerkeleyUnites States

Personalised recommendations