Advertisement

Journal of Cluster Science

, Volume 23, Issue 2, pp 503–509 | Cite as

Organic-Assisted Nano-Sized Antimony Telluride Prepared by Co-Precipitation Reductive Route

  • Masoud Salavati-Niasari
  • Mehdi Bazarganipour
Original Paper

Abstract

Nano-sized antimony telluride is of much interest for improving the thermoelectric figure of merit. In the present work, organic-assisted antimony telluride nanorods were successfully fabricated by a simple hydrothermal method. The products were characterized by means of X-ray diffraction, scanning electron microscope, and transmission electron microscope. The results show that the typical antimony telluride synthesized by co-precipitation reductive route is rodlike in shape with about 35 nm in thickness and 300 nm in edge length.

Keywords

Antimony telluride Nano-sized materials Co-precipitation Reductive route 

Notes

Acknowledgment

Authors are grateful to Council of Institute of Nano Science and Nano Technology, University of Kashan and for providing financial support to undertake this work.

References

  1. 1.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O. Quinn (2001). Nature 413, 597.CrossRefGoogle Scholar
  2. 2.
    B. Zhou, Y. Ji, Y.-F. Yang, X.-H. Li, and J.-J. Zhu (2008). Cryst. Growth. Des. 8, 4394.CrossRefGoogle Scholar
  3. 3.
    M. Salavati-Niasari, M. Bazarganipour, and F. Davar (2010). J. Alloys Compd. 489, 530.CrossRefGoogle Scholar
  4. 4.
    M. Salavati-Niasari, M. Bazarganipour, and F. Davar (2011). Inorg. Chimica. Acta 365, 61.CrossRefGoogle Scholar
  5. 5.
    W. Shi, L. Zhou, S. Song, J. Yang, and H. Zhang (2008). Adv. Mater. 20, 1892.CrossRefGoogle Scholar
  6. 6.
    W. D. Shi, J. B. Yu, H. S. Wang, and H. J. Zhang (2006). J. Am. Chem. Soc. 128, 16490.CrossRefGoogle Scholar
  7. 7.
    A. Trifonova, M. Wachtler, M. R. Wagner, H. Schroettner, C. Mitterbauer, F. Hofer, K.-C. Möller, M. Winter, and J. O. Besenhard (2004). Solid State Ion. 168, 51.CrossRefGoogle Scholar
  8. 8.
    S. Shi, M. Cao, and C. Hu (2009). Cryst. Growth. Des. 9, 2057.CrossRefGoogle Scholar
  9. 9.
    S. S. Garje, D. J. Eisler, J. S. Ritch, M. Afzaal, P. O’Brien, and T. Chivers (2006). J. Am. Chem. Soc. 128, 3120.CrossRefGoogle Scholar
  10. 10.
    J. Yang, W. Zhu, X. Gao, S. Bao, X. Fan, X. Duan, and J. Hou (2006). J. Phys. Chem. B 110, 4599.CrossRefGoogle Scholar
  11. 11.
    W. Wang, B. Poudel, J. Yang, D. Z. Wang, and Z. F. Ren (2005). J. Am. Chem. Soc. 127, 13792.CrossRefGoogle Scholar
  12. 12.
    C. Jin, G. Zhang, T. Qian, X. Li, and Z. Yao (2005). J. Phys. Chem. B 109, 1430.CrossRefGoogle Scholar
  13. 13.
    I. Y. Erdogăn and Ü. Demir (2009). J. Electroanal. Chem. 633, 253.CrossRefGoogle Scholar
  14. 14.
    B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor (2004). Chem. Rev. 104, 3893.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran
  2. 2.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of KashanKashanIslamic Republic of Iran

Personalised recommendations